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Abstract. The algebra of generalized linear quantum canonical transformations is examined in
the perspective of Schwinger’s unitary-canonical operator basis. Formulation of the quantum
phase problem within the theory of quantum canonical transformations and in particular with
the generalized quantum action-angle phase space formalism is established and it is shown that
the conceptual foundation of the quantum phase problem lies within the algebraic properties of
the canonical transformations in the quantum phase space. The representations of the Wigner
function in the generalized action-angle unitary operator pair for certain Hamiltonian systems with
dynamical symmetry is examined. This generalized canonical formalism is applied to the quantum
harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the
action-angle Wigner function.

1. Introduction and review

The quantum mechanical operator realization of the classical phase observable, well known
as the historical quantum phase problem, is one of the oldest problems in quantum mechanics.
In the quest for a correspondence between the classical action-angle (AA) variables and
their quantum counterparts, Bornet al investigated [1] the problem in the earliest days of
quantum mechanics from the general perspective of building a theory of quantum canonical
transformations and their unitary representations. The search for a quantum phase operator
within this canonical perspective was specifically begun in one of Dirac’s early works [2] in
1927 where the principal motivation was to extend the principle of correspondence to that
between classical AA variables and their quantum counterparts. The quantum phase problem
was then followed by the works of Heitler [3] and Louisell [4] where it was examined in
terms of the quantization of the electromagnetic field. The introduction oftrigonometric
Hermitianphase operators by Susskind and Glogower [5] created a trigonometric approach to
the phase problem. At this point, a landmark was reached with the introduction of a coherent
state formalism by Glauber [6] and, with the development of laser physics in the 1960s,
the theoretical and experimental investigation of the properties of the quantum phase became
mainstream in quantum optics. On the other hand, contemporary to Glauber’s work, Carruthers
and Nieto in their seminal paper [7], wisely entitled asPhase and angle variables in quantum
mechanics, revived interest in the canonical approach advocated in the early days of quantum
mechanics. Since our interest in this paper is within the canonical perspective, we refer the
interested reader to, for instance, some recent reviews on the quantum phase as seen from the
perspective of quantum optics [8,9]. In the search for the quantum counterpart of the classical
AA pair, the canonical perspective in the quantum phase problem was furthered mainly by
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the works of Rocca and Siruge [10], Boyer and Wolf [11], Moshinsky and Seligman [12],
as well as Luis and Sanchez-Soto [13] and more recently by Lewiset al [14]. In an earlier
paper [15], we introduced a different canonical-algebraic approach to the quantum phase
problem from those in [11–14] by starting from the generalized discrete unitary-cyclic finite (D)
dimensional representations of the quantum phase space (QPS) distribution functions in terms
of Schwinger’s operator basis [16,17]. There are two crucial properties of these representations
from the quantum phase operator point of view. The first one is that Schwinger’s operator basis
supports discrete cyclic finiteD-dimensional subalgebraic representations with non-negative
norms in theD-dimensional Hilbert spaceHD. These cyclic and admissible representations are
known to be crucial for the existence of the phase operator in an arbitrary but finite-dimensional
algebra. On the other hand, the second crucial property is connected with the fact that the
complete set of elements of the discrete finite-dimensional cyclic Schwinger operator basis
are the generalized dual representations of the standard Wigner–Kirkwood (WK) [18] ones of
the QPS [15–17]. Moreover, these elements are the generators of the discrete area preserving
diffeomorphism on the two-dimensional toroidal latticeZD ×ZD which are known to respect
the Fairlie–Fletcher–Zachos (FFZ) sine algebra [19]. As the dimensionD is extended to
infinity, a limit to continuum can be realized where the connection with Arnold’s infinitesimal
area preserving diffeomorphism [20] on the continuous two-torus is established. Hence, the
representations of the QPS in terms of Schwinger’s unitary-canonical operator basis paves a
direct route to the algebraic formulation of the quantum phase operator in connection with
the linear quantum canonical transformations (LCT). By this argument we imply that the
algebraic formulation of the quantum phase problem is connected, through the Wigner–Weyl–
Moyal (WWM) correspondence, with the existence of a canonical formalism of the quantum
AA operators in the QPS. This correspondence, although it will be shown to be manifest for
arbitrary but finite dimensions leading to the finite-dimensional algebraic realizations of the
AA Wigner function, yields the desired correspondence between the quantum and the classical
AA formalismsonly in the transition to the continuum limit.

The main purpose of this paper is to extend the canonical-algebraic approach to the
quantum phase problem in [15] by formulating this correspondence explicitly in terms of
the generators of the LCT. The quantum AA operators will be found in terms of the generators
of the LCT and it will be shown that the angle operator unitary-canonical to the quantum action
will be identified as the unitary quantum phase operator.

Here we review some relevant parts of [15] for completeness. Some additional material
is also included in the appendix. The duality relations between the discrete generalized WK
phase space operator basis1(En) and the Schwinger operator basisŜ Em can be expressed as [15]

1̂(En) = 1

D3/2

∑
Em

e−iγ0( Em×En)Ŝ Em Ŝ Em = 1√
D

∑
En

eiγ0( Em×En)1̂(En) (1)

where Em = (m1, m2), En = (n1, n2) are vectors inZD × ZD; Em × En ≡ (m1n2 − m2n1),
γ0 = 2π/D, withD describing the dimension of the cyclic representations. Here the Schwinger
operator basiŝS Em is defined in terms of a finite-dimensional unitary cyclic operator pair(Û, V̂)
such that

Ûm1V̂m2 = eiγ0m1m2V̂m2Ûm1 Ŝ Em = e−iγ0m1m2/2Ûm1V̂m2. (2)

TheD-dimensional cyclic eigenspace{|v〉k}06k6(D−1) and{|u〉k}06k6(D−1) of the operators
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Û, V̂ satisfy

Û |v〉k = eiγ0k|v〉k |v〉k+D = |v〉k
V̂|u〉k = e−iγ0k|u〉k |u〉k+D = |u〉k
Û |u〉k = |u〉k+1

V̂|v〉k = |v〉k+1

(3)

and define a unitary Fourier duality as

{|v〉} = F̂{|u〉} where (F̂)k,k′ = 1√
D

e−iγ0kk
′ F̂† = F̂−1 (4)

where the dual picture implies a Fourier automorphism onÛ and V̂ in a sequence of
transformations as(

Û
V̂

)
F̂−→

(
V̂
Û−1

)
F̂−→

(
Û−1

V̂−1

)
F̂−→

(
V̂−1

Û

)
F̂−→

(
Û
V̂

)
. (5)

It can be shown that this Fourier operator duality betweenÛ andV̂ implies

F̂ Ŝ EmF̂−1 = ŜRπ/2: Em F̂4 = 1 and R4
π/2 = 1 (6)

whereRπ/2 : Em = (−m2, m1) corresponds to aπ/2 rotation of the vectorEm in the discrete
phase space.

Equations (2) and (3) imply for the properties of theŜ Em basis

Ŝ
†
Em = Ŝ− Em

Tr{Ŝ Em} = Dδ Em,E0
Ŝ EmŜ Em′ = eiγ0 Em× Em′/2Ŝ Em+ Em′
(Ŝ EmŜ Em′)Ŝ Em′′ = Ŝ Em(Ŝ Em′ Ŝ Em′′) (associativity)

ŜE0 = I (unit element)

Ŝ EmŜ− Em = I (inverse).

(7)

The generalized discrete Wigner functionW(En) in the physical state|ψ〉 ∈ HD is defined
by [15,17]

W(En) = 〈ψ |1̂(En)|ψ〉 (8)

where equation (8) complies with all fundamental conditions that a generalized QPS
distribution should satisfy. The normalization of equation (8) is based on an appropriate
summation of the WK operator basis in equation (1) over the discrete phase space vectorEn. It
is possible to use different normalizations when both (or one of the) labels are (is) continuous
on the two-dimensional torus. In these particular cases the phase space representations are
based onR × R or Z × R respectively. Different normalizations are necessary for different
choices of the phase space variables in order to obtain the appropriate continuum limit for the
Wigner function. For instance, the symmetric normalization is necessary when the discrete
phase space labels approach to the continuous ones simultaneously (i.e.ZD × ZD → R×R)
such as in the case of canonical pair of coordinate and momentumx, p leading to the continuous
phase space distributionW(x, p). The limit to continuous AA Wigner functionW(J, θ) is
recovered [15] when one of the phase space labels is real and the other remains to be an integer
in the limit D → ∞; henceZD × ZD → Z × R. In section 2 we base our formulation on
the symmetric normalization as given in equation (1) whereas, in section 4, the AA Wigner
function is examined using the appropriate asymmetric normalization withZ×R without any
loss of generality.
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In section 2 we start the formulation of the LCT. Section 2.1 is devoted to the discrete
scenario where the elements of LCT are inSL(2,ZD). Their action on Schwinger’s discrete
cyclic operator basis is defined. The conditions of existence of aunitary-canonicalpartner
to the generators of LCT are found for an arbitrary Hilbert space dimension and, provided
such conditions are met, the existence of the unitary-canonical partner for each irreducible
representation is demonstrated in the strong operator sense.

In section 2.2 the continuous scenario is examined. The elements of the continuous LCT
are examined within the context of the irreducible representations ofSL(2,R). The operators
corresponding to the unitary canonical partners of continuous LCT within each one parameter
subgroup ofSL(2,R) as well as the entire group are derived by the matrix elements of the
diagonal representations of the corresponding group elements. Section 3 is devoted to the
Hamiltonian system with its dynamical symmetry group corresponding to that of LCT. The
unitary canonical partners to the generators of LCT are identified as the unitary phase operators
and their equations of motion are derived separately for Hamiltonians with a continuous as well
as discrete spectrum. The connections between the quantum AA formalism and the dynamical
symmetry is established at theoperator level. Section 4 is devoted to the construction of the
AA Wigner function. The continuous scenario is treated in section 4.1 and the AA Wigner
function of the generalized oscillator with a discrete cyclic spectrum is presented in 4.2. The
limit to the quantum harmonic oscillator (QHO) AA formalism is also established.

2. Generators of the linear canonical transformations

2.1. On the discrete toroidal latticeZD × ZD
The unitary Fourier automorphism in equation (5) implies the simplest discrete canonical
transformationEm → Rπ/2 : Em on the phase space labels as given by equation (6). It was
shown in [15] that equations (5) are a special case of a more general automorphic sequence
produced by a unitary canonical transformation generatorĜ with Ĝ† = Ĝ−1 where

Ĝ†Û Ĝ = ŜEs Ĝ†V̂ Ĝ = ŜEt
Û Ĝ−→ ŜEs

Ĝ−→ Ŝs1Es+s2Et
Ĝ−→ · · ·

V̂ Ĝ−→ ŜEt
Ĝ−→ Ŝt1Es+t2Et

Ĝ−→ · · · .
(9)

Such a unitary generator satisfies

Ĝ†Ŝ EmĜ = ŜR: Em where R : Em = Em′ = (s1m1 + t1m2, s2m1 + t2m2) (10)

with detR = Es × Et = 1 whereEs = (s1, s2) andEt = (t1, t2) are two arbitrary labelling vectors
characterizing the LCT inZD×ZD. HenceR ∈ SL(2,ZD). Equations (5) and (6) correspond
to a special realization of equation (10) whenEs = (0, 1) andEt = (−1, 0). The application of
Ĝ leaves equation (7) covariant.

Using equation (10) in equation (1) it can be shown thatĜ generates discrete canonical
transformations in the WK basis as

1(En′) = Ĝ†1(En)Ĝ = 1(R−1 : En) (11)

whereR−1 : En = En′ = (t2n1− t1n2,−s2n1 + s1n2).
The explicit form ofĜ and its irreducible representations have been studied in detail for the

specific case ofD being a prime of the typeD = 4k ± 1 wherek ∈ Z, in connection with the
Schwinger operator basis by regardingĜ as the generator of the time evolution (Hamiltonian)
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of theSL(2, ZD) oscillator [21]. Specifically,̂G has cyclic generators which can be chosen as

g1 =
(

1 1
0 1

)
g2 =

(
g0 0
0 g−1

0

)
g3 =

{(
a −b
b a

)
, a2 + b2 = 1 (modD)

}
(12)

with periodsD, D − 1 and 4k, respectively. Hereg0 is a primitive element ofZD where
gD−1

0 = 1 (modD).
For suchD, the explicit form of Ĝ satisfying equations (9), or more compactly

equation (10), is given by [21]

Ĝ = Ĝ(R) =



σ(1)σ (δ)

D

∑
Em

eiγ0[t1m2
1+(t2−s1)m1m2−s2m2

2]/2δ{m1, m2} if δ 6= 0

σ(−2t1)√
D

∑
m1

eiγ0m
2
1/2t1{m1(s1− 1)/t1, m1} if δ = 0 t1 6= 0

σ(−2s2)√
D

∑
m1

e−iγ0m
2
1/2s2{m1, 0} if δ = t1 = 0 s2 6= 0

(13)

where it is defined thatδ ≡ 2− s1− t2 and{m1, m2} ≡ Ŝ Em. Hereσ(m) is the Gauss sum

σ(m) ≡ 1√
D

D−1∑
n=0

eiγ0mn
2
. (14)

It can be seen by direct inspection thatĜ(R−1) = Ĝ−1(R) = Ĝ†(R), namelyĜ is unitary.
Our main purpose in this section is to search for the condition of existence of aunitary

canonicalpartnerÔ to Ĝ such that

ĜÔ = �ÔĜ |�| = 1 [Ĝ, �] = [Ô, �] = 0. (15)

If equation (15) is satisfied for some pure phase factor� and a unitaryÔ, then we consider
equation (15) as a generalized canonical commutation relation for the pairĜ, Ô. The
equation (15) then implies that̂O rotates the eigenspectrum ofĜ in a cyclic order and vice
versa. It is beyond the scope of this paper to examine the characterization of the irreducible
representations of the most general group defined byĜ, Ô, � in equation (15) above. Here,
we confine our attention to those relatively simpler cases leading to the unique irreducible
representations of the group in which the operatorÔ becomes the unitary-canonical partner
of the generalized canonical transformation generatorĜ. For this purpose, let us start with the
simplest case such that for some non-zero integersa, b, c we have

Ĝa = Ôb = �c = 1. (16)

Then we call the group defined by the elementsĜ`1 Ô`2 �`3, wherè 1, `2, `3 are integers defined
(moda), (modb), (modc) respectively, as a discrete Heisenberg–Weyl group0(a, b, c). An
explicit calculation yields that the group elements are uniquely defined only whenc divides
botha andb (i.e. a = ca′, b = cb′ wherea′, b′ ∈ Z). Furthermore, from equations (16) and
(15) we also have�a = �b = �c = 1 which implies thata, b, cmust have a greatest common
divisor d. These results imply thata = dc′′a′, b = dc′′b′, c = dc′′ wherec′′ ∈ Z. Without
loss of generality we will assume thatc′′ = 1. The group defined by the Schwinger operator
basisS Em in equations (2) and (3) with general elements asÛm1 V̂m2 ωm3 wherem1, m2, m3

are integers(modD) is then a specific example of0(a, b, c) with a = b = c = D. The
number of irreducible representations of0(a, b, c) with a = da′, b = db′, c = d depends
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on the numbersa′, b′. Fora′ = b′ = 1 there is only one irreducible representation which is
d-dimensional and is given by the Weyl matrices [22],

Ĝ → diag(1, �,�2, . . . , �d−1) Ô→


0 0 . . . 0 1
1 0 . . . 0 0
0 1 0 . . . 0
...

...
...

. . . 0
0 0 . . . 1 0

 (17)

where a unitaryÔ satisfying equation (15) exists as given in equation (17). Fora′, b′ 6= 1,
the number of such irreducible representations is given by the producta′b′ and they are all
d-dimensional. Up to a unitary equivalence, each irreducible representation is isomorphic
to that in equation (17). The connection of direct product representation of0(d, d, d) and
its connection with the Chinese remainder theorem for the unique prime factorization ofd

was studied recently in [23]. Each prime factor represents an independent physical degree
of freedom allowing the extension of the phase space formalism presented here to more than
one degrees of freedom [16, 17]. A similar decomposition can also be performed for the
more general group0(a, b, d)with a, b, d as defined above. The correspondence between the
discrete QPS AA formalism with one degree of freedom and the classical one can be extended
to more than one degree of freedom at an algebraic level. Within the purpose of this paper we
will establish this correspondence only for the case with one degree of freedom and examine
the larger degrees of freedom in a separate paper.

There is already an extensive literature on the representations of the discrete canonical
transformations induced bŷG = SL(2,ZD). One particularly important limit in the discrete
scenario is whenĜ is represented only by the rotational generatorg3 in equation (12)
corresponding to the discrete fractional Fourier operatorF̂1/k = Ĝ such thatĜ4k = I. This
limit has been examined in detail both from the formal quantum mechanical [24] and more
applied, non-algebraic perspectives [25, 26]. For an arbitrary Hilbert space dimension the
multiplicities of the four distinct eigenvalues of the fractional Fourier operatorF̂1/k are not
identical [25] and neither̂F nor F̂1/4k has an exact unitary-canonical partner in the sense of
Ô satisfying equation (15).

2.2. Generators of the infinitesimal canonical transformations inR× R
The modular groupSL(2,ZD) does not have a proper continuous limit intoSL(2,R); hence,
we cannot take the formal limitD→∞ in equation (10) to examine the continuous scenario.
We will base the continuous representation of linear canonical transformations inSL(2,R) in
the formal sense on

Ĝ†
∞ŜEαĜ∞ = ŜEα′ (18)

where Eα = (α1, α2) ∈ R × R is a continuous phase space vector,ŜEα are elements of the
continuous Schwinger operator basis [16] andEα′ = R : Eα with R ∈ SL(2,R) indicate the
transformation matrix with real elements. From here on we will be confined to the continuous
scenario in which we can drop the subscript∞ from the canonical transformation generators
Ĝ∞. The three one-parameter subgroupsgj , (j = 1, 2, 3) of SL(2,R), as conventionally
represented by the three 2× 2 matrices, correspond to

�1(ψ) =
(

coshψ/2 sinhψ/2
sinhψ/2 coshψ/2

)
�2(θ) =

(
cosθ/2 sinθ/2
− sinθ/2 cosθ/2

)
�3(ϕ) =

(
eϕ/2 0
0 e−ϕ/2

)
(19)
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where�j ∈ gj , −∞ < ψ <∞, −π < θ < π and−π 6 ϕ 6 π . A generic group element
g ∈ SL(2,R) can be parametrized as

g =
(
α β

γ δ

)
where detg = 1 (20)

with α, β, γ, δ ∈ R being functions ofψ, θ, ϕ.
The three Hermitian operatorŝKj , (j = 1, 2, 3) corresponding to the infinitesimal

generators of the transformation in each subgroup respect the commutation relations

[K̂1, K̂2] = iK̂3 [K̂2, K̂3] = iK̂1 [K̂1, K̂3] = iK̂2. (21)

We are particularly interested in the continuous irreducible representation ofK̂j , (j = 1, 2, 3)
in the canonical phase space parametrized byEα in equation (18). This particular representation
of the generators can be given by

K̂1 = −i(α1∂α2 + α2∂α1)/2

K̂2 = −i(α1∂α2 − α2∂α1)/2

K̂3 = −i(α1∂α1 − α2∂α2)/2

(22)

where each irreducible representation acts on the Hilbert space of homogeneous polynomials
of degree 2̀, and a definite parityε where 2̀ ∈ Z with ε = ± describing the odd(−) and
even(+) parity. Hence we characterize those irreducible representations using the standard
notation byTχ(gj ) whereχ = (`, ε) and the sector of the Hilbert space they belong to by
Hχ . Also, in the familyTχ(gj ) we are particularly interested in the diagonal representations
of each generator in equation (22).

2.2.1. Diagonal representations of thej th subgroupgj . We now describe the eigenvectors
|eχj (γj )〉 in the diagonal representationsTχ(gj ) characterized by a particularj wherej =
(1, 2, 3) with their corresponding projections on the canonical phase space〈Eα|eχj (γj )〉 ≡
e
χ

j (Eα, γj ). Considering the simplest case of` = 0 first, 〈Eα|eχj (γj )〉 are given by

Tχ(�1) : eχ1 (Eα, γ1) = C1

(
α1 + α2

α1− α2

)iγ1

Tχ(�2) : eχ2 (Eα, γ2) = C2

(
α1 + i α2

α1− iα2

)γ2

Tχ(�3) : eχ3 (Eα, γ3) = C3

(
α1

α2

)iγ3

(23)

whereγj ∈ R andCj are constants based on an appropriate normalization by the inner product
〈eχj (γj )|eχj (γ ′j )〉 = δ(γj − γ ′j ). Equations (23) imply that

K̂j |eχj (γj )〉 = γj |eχj (γj )〉. (24)

Within each subgroupgj , (j = 1, 2, 3) we now define the unitary subgroup elementsĜj ∈ gj
such that

Ĝ0jj = e−i0j K̂j (25)

where0j ∈ R, (j = 1, 2, 3). The representations of equations (25) in terms of 2× 2 matrices
in the phase spaceEα = (

α1

α2

)
are given by the�j in equation (19), namely, the action of the

each group element̂Gj in equation (18) is given by

(Ĝ0jj )
† ŜEαĜ

0j
j ≡ Ŝα′ = Ŝ�j :Eα. (26)
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Within each subgroupgj there exists, in the Schwinger sense [15], aspecial canonicalpartner
denoted byÔj of Ĝj such that

Ĝ0jj Ô
ζj
j = e−i0j ζj Ôζjj Ĝ

0j
j . (27)

Equation (27) implies that

Ĝ0jj |eχj (γj )〉 = e−i0j γj |eχj (γj )〉 Ôζjj |eχj (γj )〉 ∼ |eχj (γj + ζj )〉 (28)

where the∼ sign indicates that the equality holds up to an indeterminable phase factor which
we consider to be irrelevant. Then equation (28) provides a representation for the operatorÔj
in the diagonal representation ofĜj . To complete the picture we consider, for each subgroup
gj , the diagonal representation of theÔj operator such that

Ôζjj |f χj (ηj )〉 = eiζj ηj |f χj (ηj )〉 ηj ∈ R. (29)

From equations (27) the action ofĜ0jj on this basis can be found as

Ĝ0jj |f χj (ηj )〉 ∼ |f χj (ηj + 0j )〉. (30)

The∼ again indicates that there is an overall indeterminable phase which we ignore without
any loss of generality. Then equations (27)–(30) completely determine, in the weak sense, the
properties of the operator pair(Ĝ, Ô) within the Hilbert space of each subgroupgj as three
different realizations of the Schwinger operator basis. The connection between the eigenbasis
|eχj (γj )〉 and|f χj (ηj )〉 is given by the Fourier transformation

|f χj (ηj )〉 =
∫

dγj e−iγj ηj |eχj (γj )〉 |eχj (γj )〉 =
∫

dηj eiηj γj |f χj (ηj )〉 (31)

where in short notation|f χj (ηj )〉 = F̂ |eχj (γj )〉 with (F̂)ηj ,γj = (〈f χj (ηj )|eχj (γj )〉) describing

the matrix elements parametrized by(ηj , γj ) of the unitary Fourier operator̂F . Via
equation (31) a Fourier automorphism is implied between the two eigenspaces for eachj

as

|eχj (γj )〉
F̂−→ |f χj (ηj )〉

F̂−→ |eχj (−γj )〉
F̂−→ |f χj (−ηj )〉

F̂−→ |eχj (γj )〉. (32)

2.2.2. Diagonal representations of the entire groupg. We now shift our attention from the
parametrization of the diagonal representations ofgj to those of the entire groupg of which
the three-parameter group element will be denoted byĜ. For convenience of the calculations
we adopt the unitary canonical form forĜ as [27]

Ĝ3 = e−i E3· ÊK E3 = (31,32,33)
Ê
K = (K̂1, K̂2, K̂3) (33)

where E3 is defined on theSL(2,R) invariant group manifold characterized by the invariant
32 = 32

1 + 32
3 − 32

2. Adopting the particular parametrization31 = 3 sina coshb,
32 = 3 sina sinhb, and33 = 3 cosa, equation (33) can be obtained, for example, fromĜ33
in equation (25) by the unitary transformation

Ĝ3 = (T̂ (−a,b)23 )†Ĝ33 T̂
(−a,b)

23 where T̂ (−a,b)23 = Ĝ−a2 Ĝ
b
3. (34)

SinceĜ0 in equation (33) is an element ofSL(2,R), the irreducible representations also act
on the homogeneous polynomials of degree 2` and parityε = ± in Hχ .
(i) Continuous diagonal representations.
Similar to equations (24) and to the first set in equations (28) for the subgroups, we now seek
the eigenvectors|hχ(γ )〉 ∈ Hχ of Ĝ3 such that

Ĝ3|hχ(γ )〉 = eiA|hχ(γ )〉 A ∈ R (35)



Linear canonical transformations and quantum phase 4119

whereA and|hχ(γ )〉 are to be found from the eigenproblem in equation (35). Equation (34)
suggests that

|hχ(γ )〉 = (T̂ (−a,b)23 )†|eχ3 (γ )〉 (36)

whereA = −3 in equation (35). Hence|hχ(γ )〉 spans the eigenspace of the unitary operator
in equation (33) with3, γ ∈ R. The orthonormality of the eigenbasis|hχ(γ )〉 is guaranteed by
the unitary transformation in equation (36) and the orthonormality of the eigenbasis|eχ3 (γ )〉.
A phase space representation for|hχ(γ )〉 similar to equations (23) can be found by projecting
it on the phase space vectorEα as

〈Eα|hχ(γ )〉 ≡ hχ(Eα, γ ) = 〈Eα|(T̂ (−a,b)23 )†|eχ3 (γ )〉 T̂ (−a,b)23

(
α1

α2

)
= �3(b)�2(a)

(
α1

α2

)
(37)

where�2(a) and�3(b) are implied by equation (19). Theunitary-canonicalpartner ofĜ can
be found similarly as it was done for the subgroups. DefiningÔ such that

Ĝ3Ôζ = e−i3ζ Ôζ Ĝ3 (38)

we find

Ĝ3|hχ(γ )〉 = e−i3γ |hχ(γ )〉 Ôζ |hχ(γ )〉 ∼ |hχ(γ + ζ )〉
Ôζ |kχ(η)〉 = eiζη|kχ(η)〉 Ĝ3|kχ(η)〉 ∼ |kχ(η +3)〉 (39)

where we will again neglect the overall phases in the second column of the relations above.
The basis vectors in equation (39) are connected by the Fourier transformation

|kχ(η)〉 =
∫

dγ e−iγ η|hχ(γ )〉 |hχ(γ )〉 =
∫

dη eiγ η|kχ(η)〉 (40)

and a similar automorphism to equation (32) between|hχ(γ )〉 and |kχ(η)〉 as well as to
equation (5) at the operator level betweenĜ andÔ can be written.
(ii) Discrete diagonal representations.
In examining the discrete representations of the entire group we start with the diagonal ones
|eχ2 (m)〉 of K̂2 and associate with them the eigenfunctions

〈Eα|eχ2 (m)〉 ≡ eχ2 (Eα;m) = N(`)
2 (α2

1 + α2
2)
`

(
α1 + iα2

α1− iα2

)m
(41)

whereN(`)
2 is a normalization based on an inner product〈eχ2 (Eα;m)|eχ2 (Eα;m′)〉 = δm,m′ . For

the state in equation (41) we have

K̂2|eχ2 (m)〉 = m|eχ2 (m)〉
K̂+|eχ2 (m)〉 = −(`−m)|eχ2 (m + 1)〉
K̂−|eχ2 (m)〉 = (` +m)|eχ2 (m− 1)〉

(42)

whereK̂± = (K̂1 ± iK̂3) and the Casimir element̂K2 = 1/2(K̂+K̂− + K̂−K̂+) − K2
2 has

eigenvaluè (` + 1). In terms of thè 6= 0 representation in equations (41) and (42), the
continuous representations that we used in equation (23) correspond to the` = 0 case. A
general eigenvector for a group element in equation (33) can be found similarly as in the
continuous case by redefiningE3 = (31,32,33) as, for instance,31 = 3 sinha′ sinb′, 32 =
3 cosha′, 33 = 3 sinha′ cosb′ and the transformation

Ĝ3 = (T̂ (a′,b′)12 )† Ĝ32 T̂
(a′,b′)

12 where T̂ (a
′,b′)

12 = Ĝa1 Ĝb2. (43)
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The eigenvectors|hχ(m)〉 of a general group elementĜ3 are then associated with the functions
in Hχ

〈Eα|hχ(m)〉 ≡ hχ(Eα;m) = 〈Eα|(T̂ (a′,b′)12 )†|eχ2 (m)〉 T̂ (a
′,b′)

12

(
α1

α2

)
= �2(−b′)�1(a

′)
(
α1

α2

)
(44)

where�2(−b) and�1(a) are implied by equations (19). To establish the representation of the
unitary canonical pair(Ĝ, Ô) in the discrete case we consider

Ĝ3Ôr = e−i3rÔr Ĝ3 (45)

corresponding to a changeζ → r ∈ Z in equation (38). For the system of eigenvectors we
find

Ĝ3 |hχ(m)〉 = e−i3m|hχ(m)〉 Ôr |hχ(m)〉 ∼ |hχ(m + r)〉
Ôr |kχ(η)〉 = eiηr |kχ(j, η)〉 Ĝ3|kχ(η)〉 ∼ |kχ(η +3)〉 (46)

where3, η ∈ R. The eigenspaces are connected by the (discrete and continuous) Fourier
transformation as

kχ(Eα; η) =
∑
m

e−iηmhχ(Eα;m) hχ(Eα;m) =
∫

dη eimηkχ(Eα; η). (47)

The equations (46) and (47) conclude our brief treatment of the unitary continuous phase space
representations of the canonicalĜ, Ô pair in the weak matrix element sense.

3. Implications for the Hamiltonian systems with dynamical symmetry group and
generalized AA operators

Recently, an algebraic approach was studied by Wang and Chu [28] in the solution of the one-
dimensional inverse problem for the Hamiltonian systems with dynamical group symmetry. In
the simplest case of one dimension, the inverse problem reduces to that of finding an operator
regarding the dynamical symmetry group of the system such that it will be invariant under
either a certain subgroup or the entire group of canonical transformations. The group of
canonical transformations then naturally reflects the properties of the dynamical symmetry of
the system. For one-dimensionalautonomoussystems, the invariant operator under canonical
transformations corresponds to the generalizedaction operator, by which the Hamiltonian
of the entire system can be fully described. In the following, we will examine the quantum
canonical transformation group as the dynamical symmetry group for an Hamiltonian system
and derive the equations of motion describing the time evolution of the generalized quantum
AA operators.

Let us assume that the HamiltonianĤ describing the dynamics of a system with one degree
of freedom is represented by

Ĥ ≡ H(K̂1, K̂2, K̂3) (48)

whereK̂j are the Hermitian generators of thesl(2,R) canonical transformation algebra in
equation (33). The simplest but a sufficiently general example of an Hamiltonian with a
dynamical group symmetry can then be obtained if the Hamiltonian is a real function of the
linear superposition of̂Kj as,

Ĥ = H(P K̂1 +QK̂2 +RK̂3) P,Q,R ∈ R. (49)
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Here, we do not make any assumptions aside from the one thatH is a real valued and a well
behaved function. Our focus will be on those unitary elements of the dynamical symmetry
group that can be described by

Ĝ0 = e−i0(P K̂1+QK̂2+RK̂3) (50)

where the Hamiltonian in equation (49) becomes

Ĥ = H
(

i
∂

∂0

)
Ĝ0
∣∣∣∣
0=0

. (51)

The time-dependent eigenvectors|ψχ
γ (t)〉 of Ĥ and the eigenenergies in the continuous

representation are given by

〈Eα|ψχ
γ (t)〉 = eiEγ thχ (Eα, γ ) Eγ = H(γ ) (52)

wherehχ(Eα, γ ) is given by equation (37). Here, the unitary canonical partnerÔ to Ĝ plays
the role of the unitary angle operator and is defined by equation (38). The time evolution of
Ôζ is given by

i
d

dt
〈ψγ ′ |Ôζ |ψγ 〉 = 〈ψγ ′ |[Ĥ, Ôζ ]|ψγ ′ 〉 = −〈ψγ ′ |Ôζ |ψγ 〉{H(γ + ζ )−H(γ )}. (53)

If we symbolically associate anHermitianphase operator atζ = 0 with

φ̂ = −i
d

dζ
Ôζ
∣∣∣∣
ζ=0

(54)

equation (53) becomes, in terms ofφ̂

lim
ζ→0

〈
ψγ−ζ

∣∣∣∣ d

dt
φ̂

∣∣∣∣ψγ 〉 = −dEγ
dγ

lim
ζ→0
〈ψγ−ζ |ψγ 〉 (55)

which is the quantum analogue of the classical equation of motion for the canonical angle
variable. Hence the unitary operatorÔ should be considered as thequantum angle operator
which is the unitary canonical partner of the action operatorĜ.

The properties of the dynamical group symmetry can also be examined by using the
discrete representation. In this case, equation (51) is still valid whereas (52) becomes

〈Eα|ψχ
m(t)〉 = eiEmthχ (Eα;m) Em = H(m) (56)

where〈Eα|ψχ
m(t)〉 is the time-dependent eigenvector,hχ(Eα;m) is given by equation (44) and

Em = H(m) is the discrete eigenenergy spectrum depending on the discrete eigenstate index
m. The appropriate angle operatorÔr in the discrete case has been studied in equations (45)
and (46). The nature of the operatorÔr becomes more transparent if we examine the derivative
of equation (45) with respect to3 at3 = 0. This can be readily evaluated as

d

d3
→ equation(45)

∣∣∣∣
3=0

H⇒ [En · ÊK, Ôr ] = −rÔr (57)

which is the generalized Susskind–Glogower–Carruthers–Nieto commutation relation [5,7,15]

for the generalizedradial number operatorEn · ÊK and the generalized unitary phase operator
Ô. The time evolution ofÔr is then

i
d

dt
〈ψχ

m′ |Ôr |ψχ
m〉 = 〈ψχ

m′ |[Ĥ, Ôr ]|ψχ
m〉 = −〈ψχ

m′ |Ôr |ψχ
m〉{H(m + r)−H(m)} (58)

which is the equation of motion for the unitary canonical angle operator of the generalized
oscillator with a discrete spectrumEm = H(m). Here, two results are in order. The first is
that we have found a correspondence between the classical and quantum AA formalisms for
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Hamiltonian systems with a dynamical group symmetry of the type given by equations (49)
and (50). The second result is the equivalence of the quantum action operator to the generators
of canonical transformations as well as that of the unitary-canonical angle operator to the
unitary-canonical phase operator.

Although the continuous and discrete representations of the AA operators are similar,
depending on the continuous/discrete nature of the eigenenergy spectrum, one or the other is
more convenient in the formulation of a physical problem. This will be more transparent in
the next section when we discuss the AA formalism of a generalized oscillator.

3.1. Implications for the generalized oscillator Hamiltonian and the quantum phase operator

In this and the following sections we refer to the appendix which includes some relevant parts of
[15]. There, it is shown that the QHO algebra is recovered in the infinite-dimensional limit (i.e.
D→∞ henceq → 1) of the admissibleq-oscillator algebraic realization in equations (A.4).
The importance of the naturally emerging admissibleq-oscillator realizations is that they
admit an algebraic formulation of the quantum phase problem and also provide a natural basis
to examine the harmonic oscillator phase in the infinite-dimensional limit of the algebra in
equations (A.4). Respecting the historical development, we will nevertheless start with a brief
outline of the phase problem using the dynamical continuous symmetry group of the QHO.
The generatorŝKi , (i = 1, 2, 3) of the dynamicalsl(2,R) symmetry of the QHO in thêx, p̂
representation are given by

K̂1 = 1
4(x̂

2 − p̂2) K̂2 = 1
4(x̂

2 + p̂2) K̂3 = 1
4(x̂p̂ + p̂x̂) [x̂, p̂] = i (59)

where the generators respect equations (21). Our first attempt will be to find the unitary
canonical partner tôK3 in equations (59). Witĥp→−i∂/∂x, the eigenproblem for̂K3 yields

K̂3|ψ3(γ3)〉 = γ3|ψ3(γ3)〉 γ3 ∈ R 〈x|ψ3(γ3)〉 = N3x
(2iγ3−1/2) (60)

whereN3 is a normalization based on an inner product. Hence, forĜ03
3 = e−i03K̂3,

Ĝ03
3 |ψ3(γ3)〉 = e−i03γ3|ψ3(γ3)〉. (61)

The unitary canonical partner̂O3 to Ĝ3, such that equation (27) is satisfied fori = 3, can be
found following the steps leading to equations (28)–(30). TheÔζ3 operator for an arbitrary and
realζ is given by

Ôζ3 =
∫ ∞
−∞

dγ3 |ψ(γ3 + ζ )〉〈ψ(γ3)|
or equivalently by

Ôζ3 =
∫ ∞
−∞

dη3 eiζη3|ψ̃(η3)〉〈ψ̃(η3)|
where

|ψ̃(η3)〉 =
∫ ∞
−∞

dγ3 e−iη3γ3|ψ(γ3)〉

(62)

namely, the existence of̂O3 is manifested by the presence of a complete spectrum ofK̂3 on
the real axis and, in return,̂O3 andĜ3 are connected by a Fourier automorphism. A similar
procedure can also be applied toK̂1 in equation (59) since the eigenspectrum of this operator
also spans the symmetric positive and negative values on the entire real axis. However, there
is a problem with theK̂2 operator. Because of the fact thatK̂2 in equations (59) is a non-
negative operator, its eigenspectrum spans only the positive real axis. Hence, the Fourier
automorphism is not applicable tôK2 and, in return, the unitary canonical partner toĜ2 cannot
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be found. This problem was attacked from a completely different perspective a long time ago
in the elegant work of Boyer and Wolf [11] where they made use of the unitary isomorphism
between theradial representation of the dynamicalSL(2,R) symmetry group of the multi-
dimensional QHO with an added centrifugal term of arbitrary strength and the representation
of the same group on the unit circle. Through this unitary mapping the space of square
integrable functions on the unit circle is an inner product space endowed with a translationally
invariant non-local measure. However, the drawback of this elegant method is that, the unitary
irreducible representations are not single-valued under full rotations on the unit circle and this
applies particularly to the standard one-dimensional QHO.

The phase problem in the QHO being the central theme of this paper, we suggest here and
in the following sections an alternative and, perhaps, a formally simpler way of looking into
the problem. We start with the admissibleq-oscillator realization in equation (A.4) with the
operatorsÂ, Â† andQ̂ and approach the QHO algebra by extendingD to infinity. We formally
express the generalized oscillator Hamiltonian as (in analogy with equation (51))

Ĥ = H(N̂) = H(q∂/∂q)Q̂|q→1 (63)

where the limitq → 1 is achieved simultaneously withD → ∞. The deformed algebra
defined by the elementŝA, Â† andQ̂ is an admissible version of the well known (deformed)
q-oscillator algebra naturally admitting real and non-negative norms in the finite-dimensional
cyclic Hilbert spaceHD. Since the deformation parameterq = e−iγ0 Em× Em′ is a pure phase with
the property thatqD = 1, the operatorŝA, Â†, Q̂ act on in the finite-D-dimensional cyclic
Fock space spanned by the cyclic orthonormal vectors{|n〉} = {|n〉06n6(D−1); |n〉 = |n +D〉}
with 〈n′|n〉 = δn′,n as,

Â|n〉 =
√
f (n)|n− 1〉

Â†|n〉 =
√
f (n + 1)|n + 1〉

Q̂|n〉 = qn|n〉 q = e−iγ0 Em× Em′
(64)

with 06 f (n) andf (n) = f (n +D) where

f (n) = qn+(D−1)/2 − q−n−(D−1)/2

q − q−1
+C C = 2

|q − q−1| 6= 0. (65)

The algebra in equation (A.4) and the relations (64) admit a unitary canonical partner toQ̂,
i.e. the unitary quantum phase operatorÊφ

Êφ =
D−1∑
n=0

|n− 1〉〈n| ÊDφ ≡ I (66)

such that

Q̂0 Êλφ = q0λÊλφQ̂0 0, λ ∈ R. (67)

The eigenvectors of̂Eφ are{|φ〉} = {φ〉06r6(D−1); |φ〉r+D ≡ |φ〉r} ∈ HD with r ′ 〈φ|φ〉r = δr ′,r
where

Êφ|φ〉r = eiγ0r |φ〉r |φ〉r = 1√
D

D−1∑
n=0

eiγ0nr |n〉 γ0 = 2π

D
. (68)

The dynamical time evolution of̂Eφ for the generalized Hamiltonian in equation (63) is given
by equation (58) as

i
d

dt
〈n′|Ê rφ|n〉 = −〈n′|Ê rφ|n〉{H(q ∂/∂q)(qn+r − qn)|q→1}

= −〈n′|Ê rφ|n〉{H(n + r)−H(n)} (69)
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and a close inspection of equation (69) with (58) indicates that the pair(Q̂, Êφ) is the
correspondingunitary AA pairfor the Hamiltonian in equation (63). As mentioned before, the
q → 1 and theD→∞ limits are to be taken simultaneously on both sides of equation (69).
In this limit the phase operator̂Eφ is theunitary versionof the Hermitian Pegg–Barnett phase

operator [29]. Making use of the fact that̂Q = qN̂ , equation (67) yields the Susskind–
Glogower–Carruthers–Nieto commutation relations [5, 7, 15] for the operator pair(N̂, Êφ).
Note that, the QHO described byH = ω n yields the equation of motion for the phase operator
in equation (69) which is formally identical to the equation of motion of the canonical angle
variable for the classical harmonic oscillator. When we examine the quantum AA formalism
of the generalized quantum oscillator in section 4.2, the harmonic oscillator will be realized
in the specific limit when the dimension of the discrete phase space representations of the
generalized oscillator is extended to infinity.

4. An equivalent realization of the Wigner function by (Ĝ, Ô)

4.1. A generalized approach to the AA Wigner function using continuous phase space
representations

It was shown that the generalized canonical phase space representation of a quantum system
can be given based on the duality between the discrete WK and the unitary cyclic Schwinger
operator bases [15,16] in equation (1). An alternative to this approach is to formulate the same
problem using the canonical transformationĜ and its unitary canonical partner̂O.

The properties of(Ĝ, Ô) studied in sections 2 and 3 manifest a full analogy to those of
(Û, V̂) in equations (3)–(5). Among the four equivalent choices in (5), we define this analogy
by the correspondence(

Û
V̂

)
⇔
(
Ô
Ĝ

)
. (70)

It is now suggestive to define a Schwinger operator basis labelled byEτ = (τ1, τ2) ∈ R×R
and defined as

6̂Eτ = e−iτ1τ2/2Ôτ1Ĝτ2 = eiτ1τ2/2 Ĝτ2Ôτ1. (71)

Before we study the algebraic properties of6̂Eτ , we look into some of the tracial properties of
Ĝ andÔ operators. Since we consider the continuum limit, it is more appropriate to examine
Ĝ andÔ in their continuous representation. Starting with equation (39) we choose the|hχ(γ )〉
basis for their representation as

Ôτ1 =
∫ ∞
−∞

dγ |hχ(γ + τ1)〉〈hχ(γ )| Ĝτ2 =
∫ ∞
−∞

dγ e−iτ2γ |hχ(γ )〉〈hχ(γ )| (72)

from which we obtain

Tr{Ôτ1Ĝτ2} =
∫ ∞
−∞

dγ ′ 〈hχ(γ ′)|{Ôτ1 Ĝτ2}|hχ(γ ′)〉 = 2πδ(τ1)δ(τ2) ≡ 2πδ(Eτ). (73)

Using equation (73) the properties of6̂Eτ can be found in manifest analogy with those ofŜ Em
in equation (7) as

6̂
†
Eτ = 6̂−Eτ

Tr{6̂Eτ } = 2πδ(Eτ)
6̂Eτ 6̂Eτ ′ = ei Eτ×Eτ ′/26̂Eτ+Eτ ′
(6̂Eτ 6̂Eτ ′)6̂Eτ ′′ = 6̂Eτ (6̂Eτ ′6̂Eτ ′′) (associativity)

6̂E0 = I (unit element)

6̂Eτ 6̂−Eτ = I (inverse).

(74)
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Hence, the canonical transformation generatorĜ and its unitary canonical partner̂O form a
continuous realization of Schwinger’s operator basis.

Using equation (1) and the analogy manifested by equation (70) we construct a dual form
for the WK operator basis using the realization of the Schwinger basis defined in equations (71)
and (74) as

1̂CT ( EV ) =
∫

dEτ
2π

e−i Eτ× EV 6̂Eτ 6̂Eτ =
∫

d EV
2π

ei Eτ× EV 1̂CT ( EV ) (75)

where the integrals are to be considered inR×R. Using the properties of̂6Eτ it can be shown
that equations (75) provide an operator basis for the Wigner function as

1̂CT ( EV ) = 1̂†
CT (
EV )∫

d EV
2π
1̂CT ( EV ) = I

Tr{1̂CT ( EV )} = I
Tr{1̂CT ( EV )1̂CT ( EV ′)} = δ( EV − EV ′).

(76)

The properties (76) are necessary and sufficient conditions in order to define a correspondence
between an arbitrary operatorF̂ and its WWM symbolf ( EV )

F̂ =
∫

d EV f ( EV )1̂CT ( EV ) f ( EV ) = Tr{F̂ 1̂CT ( EV )} (77)

with the condition that‖F̂‖ = ∫ d EV |f ( EV )|2 <∞. A few simple examples can be given:
(a) for F̂ = Ĝ3.

Using the same relations as in (a), the WWM symbol ofĜ3 is

g3( EV ) = Tr{Ĝ31̂CT ( EV )} = e−i3V1 (78)

and similarly
(b) for F̂ = Ôζ

oζ ( EV ) = Tr{Ôζ 1̂CT ( EV )} = eiζV2. (79)

(c) A particularly interesting case arises when the arbitrary operatorF̂ is invariant under a
specific unitary transformation bŷ6Eµ such that

6̂−EµF̂ 6̂ Eµ = F̂ . (80)

Such an operator has a translationally invariant WWM symbol

f ( EV ) = f ( EV + Eµ) (81)

where, since3 is arbitrary, it is implied thatf ( EV ) is independent ofEV · Enµ whereEnµ = Eµ/| Eµ|
is the unit vector in theEµ direction.

For Ĝ describing the elements of the dynamical symmetry group,1CT ( EV ) corresponds to
the quantum AA operator representation of the WK basis. Based on the analogy in equation (70)
and the generalized Wigner function defined in equation (8) we now define ageneralized AA
Wigner function of an arbitrary quantum state|ψ〉 as

Wψ( EV ) = 〈ψ |1CT ( EV )|ψ〉 (82)

which can be expressed in the continuousaction eigenbasisas

Wψ( EV ) =
∫ ∞
−∞

dτ1

2π
eiτ1 V2〈ψ |hκ(V1− τ1/2)〉〈hκ(V1 + τ1/2)|ψ〉 (83)
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and in the continuousangle eigenbasisas

Wψ( EV ) =
∫ ∞
−∞

dτ2

2π
e−iτ2 V1〈ψ |kχ(V2 − τ2/2)〉〈kχ(V2 + τ2/2)|ψ〉. (84)

Thus, equations (8) and (82) are two equivalent phase space representations of the same
quantum system. The former is defined in a generic canonical basis(Û, V̂), whereas the latter
is expressed in terms of the elements of the dynamical symmetry group of the same system.
In equations (83) and (84)V1 andV2 are, by the WWM correspondence in equations (78) and
(79), the generalized classical AA variables.

4.2. AA Wigner function for the generalized oscillator with the discrete phase space
representations

In the previous sections we examined the generalized theory of quantum AA formalism using
the continuous representations of the generalized AA operators. Here, we particularize this
formalism to that of the representations of a generalized oscillator with a discrete spectrum in
the finiteD-dimensional Hilbert spaceHD by constructing the unitary canonical pair(Ĝ, Ô)
as (

Ĝ
Ô

)
⇔
(
ÊN
Êφ

)
(85)

whereÊN = e−iγ0N̂ with N̂ as defined in equations (A.3), (A.4) and (64). The unitary operator
Êφ corresponding to the unitary angle operatorÔ above will be represented by the unitary
quantum phase operator defined in equations (66)–(68). To facilitate the correspondence with
the classical case, we switch from the generalized notationEV = (V1, V2) of the AA variables
in section 4.1 to the more standard one(J, θ). The realization of the AA WK basis in the
unitary number-phase basis(ÊN, Êφ) has been derived in [15] for the generalized oscillator
with discrete, cyclic and finiteD-dimensional Hilbert space representations as

1̂CT (J, θ) = 1

2πD

∑
Em

ei(γ0m1J−m2θ)e−iγ0m1m2/2Êm1
N Ê

m2
φ Em ∈ ZD × ZD. (86)

In the discrete case, the set of completeness relations analogous to the continuous ones in
equation (76)—by direct use of equation (86)—are

1̂CT (J, θ) = 1̂†
CT (J, θ)∫

dJ
∫

dθ 1̂CT (J, θ) = I
Tr{1̂CT (J, θ)} = 1

2π

Tr{1̂CT (J, θ)1̂CT (J
′, θ ′)} = 1

2πδ(J − J ′)δ(θ − θ ′).

(87)

The AA Wigner function of1̂CT (J, θ) in a physical state|ψ〉 is then given by [15]

W(J, θ) = 〈ψ |1̂CT (J, θ)|ψ〉 = 1

2π

D−1∑
k=0

e−ikθ 〈ψ |J − k/2〉〈J + k/2|ψ〉 k ∈ Z (88)

where the states|J ± k/2〉 are vectors in continuously shifted Fock spaces [15]. Here
{|J ± k/2〉; k = odd} ∈ F (α±1/2) and {|J ± k/2〉; k = even} ∈ F (α) with α satisfying
the conditions [15] that 2(J − α) ∈ Z andα ∈ R[0, 1). The definition of an arbitrary vector
in the continuously shifted Fock spaceF (β) has been given in [15] by

|n + β〉 ≡ 1√
D

D−1∑
`=0

e−iγ0(n+β)`|φ〉` β ∈ R[0, 1) |n + β〉 ≡ |n +D + β〉 ∈ F (β).

(89)
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Now, let us takeD→∞ in equation (86) and, using equation (89) examine equation (88) for
|ψ〉 being: (a) a pure Fock state, i.e.|ψ〉p = |n〉, n fixed and (b) a typical mixed Fock state of
the type|ψ〉m = (|n〉 + |n− 1〉)/√2, n fixed.

(a) For |ψ〉p, and after a short calculation, equation (88) can be evaluated in the limit
D→∞ as

W(J, θ)|p = 1

2π
δ(n− J ). (90)

The marginal probability distributions for theJ or θ variables in the pure Fock state can then
be found by integrating over the other variableθ or J , respectively, as

P(J )|p ≡
∫

dθ Wp(J, θ) = δ(n− J )

P̃ (θ)|p ≡
∫

dJ Wp(J, θ) = 1

2π

(91)

which correctly describe the expected results for the pure Fock state.
(b) The state|ψ〉m is the so-calledsplit state. For this state, using equation (89), we obtain

W(J, θ)|m = 1

4π
{δ(n− J ) + 2δ(n− J − 1/2) cosθ + δ(n− J − 1)}. (92)

The marginal probability distributions yield for|ψ〉m
P (J )|m = {δ(n− J ) + δ(n− J − 1)}/2
P̃ (θ)|m = (1 + cosθ)/2π

(93)

which are the correct action and angle probability distributions for the split state.
Equation (88) also provides the correct time dependence for the AA Wigner function in the

QHO limit. In order to observe this we will start with the generalized oscillator in equation (63).
The time dependence of the AA Wigner function is given by the standard expression

i
d

dt
Wψ(J, θ) = 〈ψ |[Ĥ, 1̂CT (J, θ)]|ψ〉 (94)

or, equivalently, in terms of the WWM symbolh(J, θ) of Ĥ as [30]

d

dt
Wψ(J, θ) = {h(J, θ) ∗Wψ(J, θ)−Wψ(J, θ) ∗ h(J, θ)}

∗ = exp

{
i

2

[ ←
∂

∂J

E∂
∂θ
−
←
∂

∂θ

E∂
∂J

]} (95)

where(h ∗ Wψ − Wψ ∗ h) ≡ {h,Wψ }MB is the Moyal (sine) bracket [30]. The calculation
of equation (95) requires the knowledge ofh(J, θ). This can be obtained by using the
completeness equations in (87) and the Hamiltonian operatorĤ in (63) as

Ĥ =
∫

dJ
∫

dθ h(J, θ)1̂CT (J, θ) where h(J, θ) = Tr{Ĥ1CT (J, θ)}. (96)

The trace operation can be conveniently carried in the discrete finite-dimensional cyclic
eigenspace{|n〉} = {|n〉06n6(D−1); |n + D〉 ≡ |n〉} of the HamiltonianĤ. Since for the
diagonal matrix elements〈n|1̂CT (J, θ)|n〉 = W(J, θ)|p are Wigner functions of the pure
Fock states, we can also directly use the expression (90) in the calculation of the trace. We
find that

h(J, θ) = H(J ). (97)
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Using equation (97) in equation (95)

d

dt
Wψ(J, θ) = −i

{
H
(
J +

i

2

∂

∂θ

)
−H

(
J − i

2

∂

∂θ

)}
Wψ(J, θ). (98)

Equation (98) is the equation of motion of the AA Wigner function for an arbitrary generalized
cyclic oscillator in equation (63). Now, we apply equation (98) to the QHO case where
the Hamiltonian in equation (63) is a linear operator ofN̂ , let us sayH(N̂) = ωN̂ with ω
describing the oscillator frequency. Then, by equations (96) and (97),h(J, θ) = ωJ . For the
QHO equation (98) then yields,{

d

dt
− ω ∂

∂θ

}
Wψ(J, θ) = 0 H⇒ θ = θ(t) = ωt (99)

namely, the time evolution of the QHO AA Wigner function in the phase space takes place
on the classical manifold(J = constant, θ = ωt) as expected. By equation (90), The AA
Wigner function for the pure Fock state is static. The full time dependent solution of the AA
Wigner function, for instance, for the split state and the corresponding marginal probability
distributions can be completely determined by inserting the solution ofθ(t) in equation (99)
into equations (92) and (93).

5. Conclusions

The canonical-algebraic connection between the quantum phase problem and the QPS has
already been noticed recently by some other workers. In particular, using the generators of
the angular momentumsu(2) algebra and its dual in terms of the Hermitian canonical phase
operators Vourdas studied [31] an equivalent canonical pair to(Ĝ, Ô) as defined in this paper.
Our specific aim in this paper was to further the canonical algebraic approach introduced in
[15] to unify the formulation of quantum phase with that of the algebraic theory of quantum
canonical transformations. In this context, we investigated the generators of quantum canonical
transformations, their unitary canonical partners in the Schwinger sense, as well as their action
on the functions of canonical variables of the QPS, in particular the Wigner function. Through
this connection, the quantum phase is formally established as the unitary canonical partner of
the quantum action operator which is also demonstrated for the one-dimensional generalized
oscillator.
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Appendix A.

In [15] we examined two subalgebraic realizations of the discrete-cyclic Schwinger operator
basisŜ Em. In the following we will have a brief summary of them. Based on a fixed pair of
vectors Em, Em′ the sine algebra generated byŜ Em supports two subalgebraic realizations [15].
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The standarduqsl(2) subalgebraic realization is obtained by constructing the generators

Ĵ− ≡ dŜ Em + d ′Ŝ Em′
Ĵ+ ≡ d∗Ŝ− Em + d ′∗Ŝ− Em′

L̂ ≡ Ŝ Em− Em′ = qĴ3+D
2

(A.1)

wheredd ′∗ = d∗d ′ = −(q1/2 − q−1/2)−2 andq = e−iγ0 Em× Em′ so that

Ĵ∓L̂ = q±1L̂Ĵ∓ [Ĵ−, Ĵ+] = − L̂− L̂−1

q1/2 − q−1/2
= −

[
Ĵ3 +

D

2

]
. (A.2)

This particular subalgebraic realization is sometimes referred as the magnetic translation
group [32].

On the other hand, more importantly for the purpose of this work, a second class of
subalgebraic realizations exist in the form of anadmissibleq-oscillator algebra which can be
obtained by defining

Â ≡ dŜ Em + d ′Ŝ Em′
Â† ≡ d∗Ŝ− Em + d ′∗Ŝ− Em′
Q̂ ≡ q−N̂−(D−1)/2 = q1/2Ŝ−( Em− Em′)

(A.3)

wheredd ′∗ = −d∗ d ′ = −(q − q−1)−1 andq = e−iγ0 Em× Em′ so that

ÂQ̂ = q−1Q̂Â Â†Q̂ = q Q̂Â†

Â†Â = C + [N̂ ]

such that

ÂÂ†− qÂ†Â = (1− q)C + Q̂

(A.4)

where [N̂ ] = (Q̂−1 − Q̂)/(q − q−1) andC = (| sin(γ0 Em × Em′)|)−1. Equations (A.4) imply
that theq-oscillator spectrum is non-negative (i.e. 06 ‖Â†Â‖ where the spectrum is given
by the eigenvalues of the operatorÂ† Â = C + [N̂ ]) which, further implies that the Hilbert
space is spanned by vectors with admissible (non-negative) norm. It was shown in [15] that
the admissibleq-oscillator algebra in equations (A.3) and (A.4) is crucial in establishing a
canonical-algebraic approach to the quantum phase problem. Interested readers can find more
detailed discussions of the admissibleq-oscillator realizations therein.
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