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Abstract. The algebra of generalized linear quantum canonical transformations is examined in
the perspective of Schwinger’s unitary-canonical operator basis. Formulation of the quantum
phase problem within the theory of quantum canonical transformations and in particular with
the generalized quantum action-angle phase space formalism is established and it is shown that
the conceptual foundation of the quantum phase problem lies within the algebraic properties of
the canonical transformations in the quantum phase space. The representations of the Wigner
function in the generalized action-angle unitary operator pair for certain Hamiltonian systems with
dynamical symmetry is examined. This generalized canonical formalism is applied to the quantum
harmonic oscillator to examine the properties of the unitary quantum phase operator as well as the
action-angle Wigner function.

1. Introduction and review

The quantum mechanical operator realization of the classical phase observable, well known
as the historical quantum phase problem, is one of the oldest problems in quantum mechanics.
In the quest for a correspondence between the classical action-angle (AA) variables and
their quantum counterparts, Bogat al investigated [1] the problem in the earliest days of
quantum mechanics from the general perspective of building a theory of quantum canonical
transformations and their unitary representations. The search for a quantum phase operator
within this canonical perspective was specifically begun in one of Dirac’s early works [2] in
1927 where the principal motivation was to extend the principle of correspondence to that
between classical AA variables and their quantum counterparts. The qguantum phase problem
was then followed by the works of Heitler [3] and Louisell [4] where it was examined in
terms of the quantization of the electromagnetic field. The introductiomigdnometric
Hermitianphase operators by Susskind and Glogower [5] created a trigopnometric approach to
the phase problem. At this point, a landmark was reached with the introduction of a coherent
state formalism by Glauber [6] and, with the development of laser physics in the 1960s,
the theoretical and experimental investigation of the properties of the quantum phase became
mainstream in quantum optics. On the other hand, contemporary to Glauber’s work, Carruthers
and Nieto in their seminal paper [7], wisely entitledRisase and angle variables in quantum
mechanicsrevived interest in the canonical approach advocated in the early days of quantum
mechanics. Since our interest in this paper is within the canonical perspective, we refer the
interested reader to, for instance, some recent reviews on the quantum phase as seen from the
perspective of quantum optics [8,9]. In the search for the quantum counterpart of the classical
AA pair, the canonical perspective in the quantum phase problem was furthered mainly by
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the works of Rocca and Siruge [10], Boyer and Wolf [11], Moshinsky and Seligman [12],
as well as Luis and Sanchez-Soto [13] and more recently by Lewas[14]. In an earlier

paper [15], we introduced a different canonical-algebraic approach to the quantum phase
problem fromthose in [11-14] by starting from the generalized discrete unitary-cyclic fiite (
dimensional representations of the quantum phase space (QPS) distribution functions in terms
of Schwinger’s operator basis [16,17]. There are two crucial properties of these representations
from the quantum phase operator point of view. The first one is that Schwinger's operator basis
supports discrete cyclic finit®-dimensional subalgebraic representations with non-negative
norms in theD-dimensional Hilbert spack . These cyclic and admissible representations are
known to be crucial for the existence of the phase operator in an arbitrary but finite-dimensional
algebra. On the other hand, the second crucial property is connected with the fact that the
complete set of elements of the discrete finite-dimensional cyclic Schwinger operator basis
are the generalized dual representations of the standard Wigner—Kirkwood (WK) [18] ones of
the QPS [15-17]. Moreover, these elements are the generators of the discrete area preserving
diffeomorphism on the two-dimensional toroidal lattiég x Z, which are known to respect

the Fairlie—Fletcher—Zachos (FFZ) sine algebra [19]. As the dimenBids extended to
infinity, a limit to continuum can be realized where the connection with Arnold’s infinitesimal
area preserving diffeomorphism [20] on the continuous two-torus is established. Hence, the
representations of the QPS in terms of Schwinger’s unitary-canonical operator basis paves a
direct route to the algebraic formulation of the quantum phase operator in connection with
the linear quantum canonical transformations (LCT). By this argument we imply that the
algebraic formulation of the quantum phase problem is connected, through the Wigner—Weyl—
Moyal (WWM) correspondence, with the existence of a canonical formalism of the quantum
AA operators in the QPS. This correspondence, although it will be shown to be manifest for
arbitrary but finite dimensions leading to the finite-dimensional algebraic realizations of the
AA Wigner function, yields the desired correspondence between the quantum and the classical
AA formalismsonly in the transition to the continuum limit.

The main purpose of this paper is to extend the canonical-algebraic approach to the
quantum phase problem in [15] by formulating this correspondence explicitly in terms of
the generators of the LCT. The quantum AA operators will be found in terms of the generators
of the LCT and it will be shown that the angle operator unitary-canonical to the quantum action
will be identified as the unitary quantum phase operator.

Here we review some relevant parts of [15] for completeness. Some additional material
is also included in the appendix. The duality relations between the discrete generalized WK
phase space operator baaigi) and the Schwinger operator basjscan be expressed as [15]

A 1 P .1 o
) = — § —ivo(mxn) G Lo E iv0(mxn) =
A(l’l) - D3/2 z e Sm Sm - _\/5 c (S A(l’l) (1)

wherem = (m1, my), n = (nq, ny) are vectors iZp x Zp, m x n = (miny — mony),

yo = 2r/ D, with D describing the dimension of the cyclic representations. Here the Schwinger
operator basis;; is defined in terms of a finite-dimensional unitary cyclic operator @&in))

such that

A

ymiyme — gyomumzyymayyma = @ ivomum2/2pymiyyme 2)

The D-dimensional cyclic eigenspad®)o<i<(p—1 and{|u)ito<k<(p—1) Of the operators
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U,V satisfy
U = ™) heen = V)
Vi =™ upe uhien = lu 3)
Ulu)e = u)i+1
VIv)i = [v)i+1
and define a unitary Fourier duality as
A A 1 H ’ ol A
{lv)} = F{lu)} where (F)pp = ——=e 7okk Fr=771 (4)

VD

where the dual picture implies a Fourier automorphismzbrand ¥ in a sequence of
transformations as

uy # (VN £ (U £ (VY 2 (U
~)— |~ — | A — | ~ )= 1A) (5)
1% u-1 y-1 u 1%
It can be shown that this Fourier operator duality betwgemd) implies
FSF ' =S i Fr=1 and R:,=1 (6)
whereR;, : m = (—mgp, m1) corresponds to a/2 rotation of the vectom in the discrete

phase space. A
Equations (2) and (3) imply for the properties of )gbasis

§ o5,
Tr{Ss) = Ds;
S‘an/ — eiyoﬁx%//Z oL

m+m’ (7)
S Si)Sir = Sz (S Sir) (associativity)
:6 =1 (unit element)
SpS_n=1 (inverse)

The generalized discrete Wigner functidn(iz) in the physical statéy) € Hj is defined
by [15,17]

W (i) = (Y| AG)|¥) ®)

where equation (8) complies with all fundamental conditions that a generalized QPS
distribution should satisfy. The normalization of equation (8) is based on an appropriate
summation of the WK operator basis in equation (1) over the discrete phase spacé véctor

is possible to use different normalizations when both (or one of the) labels are (is) continuous
on the two-dimensional torus. In these particular cases the phase space representations are
based oR x R or Z x R respectively. Different normalizations are necessary for different
choices of the phase space variables in order to obtain the appropriate continuum limit for the
Wigner function. For instance, the symmetric normalization is necessary when the discrete
phase space labels approach to the continuous ones simultaneou&ly k&Zp — R x R)

such asinthe case of canonical pair of coordinate and momentpteading to the continuous

phase space distributio (x, p). The limit to continuous AA Wigner functiomv (J, 8) is
recovered [15] when one of the phase space labels is real and the other remains to be an integer
in the limit D — oo; henceZp x Zp — Z x R. In section 2 we base our formulation on

the symmetric normalization as given in equation (1) whereas, in section 4, the AA Wigner
function is examined using the appropriate asymmetric normalizatiorAutiR without any

loss of generality.
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In section 2 we start the formulation of the LCT. Section 2.1 is devoted to the discrete
scenario where the elements of LCT areSih(2, Zp). Their action on Schwinger’s discrete
cyclic operator basis is defined. The conditions of existenceuwsfitary-canonicalpartner
to the generators of LCT are found for an arbitrary Hilbert space dimension and, provided
such conditions are met, the existence of the unitary-canonical partner for each irreducible
representation is demonstrated in the strong operator sense.

In section 2.2 the continuous scenario is examined. The elements of the continuous LCT
are examined within the context of the irreducible representatiofi& ¢, R). The operators
corresponding to the unitary canonical partners of continuous LCT within each one parameter
subgroup ofSL(2, R) as well as the entire group are derived by the matrix elements of the
diagonal representations of the corresponding group elements. Section 3 is devoted to the
Hamiltonian system with its dynamical symmetry group corresponding to that of LCT. The
unitary canonical partners to the generators of LCT are identified as the unitary phase operators
and their equations of motion are derived separately for Hamiltonians with a continuous as well
as discrete spectrum. The connections between the quantum AA formalism and the dynamical
symmetry is established at tlperator level Section 4 is devoted to the construction of the
AA Wigner function. The continuous scenario is treated in section 4.1 and the AA Wigner
function of the generalized oscillator with a discrete cyclic spectrum is presented in 4.2. The
limit to the quantum harmonic oscillator (QHO) AA formalism is also established.

2. Generators of the linear canonical transformations

2.1. On the discrete toroidal latticép x Zp

The unitary Fourier automorphism in equation (5) implies the simplest discrete canonical
transformationn — R, : m on the phase space labels as given by equation (6). It was
shown in [15] that equations (5) are a special case of a more general automorphic sequence
produced by a unitary canonical transformation geneatoith Gt = G~ where

GoG=%  GVG=5
g
—

~ 4 4
u

$i = Siguni —> )
VI LA S A
Such a unitary generator satisfies

G'8:6 = Sgn where R :m =m' = (symy +t1ma, somy + tomz) (10)

with detR = 5 x 7 = 1 wheres = (s1, s2) andr = (1, 1o) are two arbitrary labelling vectors
characterizingthe LCT ilp x Zp. HenceR € SL(2, Zp). Equations (5) and (6) correspond
to a special realization of equation (10) whee: (0, 1) andr = (—1, 0). The application of
G leaves equation (7) covariant.

Using equation (10) in equation (1) it can be shown thafenerates discrete canonical
transformations in the WK basis as

AG') =GTAGG = AR i) (11)

whereR1:n=n' = (tony — inp, —sony + s1n2).

The explicit form of¢ and its irreducible representations have been studied in detail for the
specific case oD being a prime of the typ® = 4k + 1 wherek € Z, in connection with the
Schwinger operator basis by regardings the generator of the time evolution (Hamiltonian)
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of the SL(2, Zp) oscillator [21]. Specificallyg has cyclic generators which can be chosen as

11 0 —b
R I T

12)
with periodsD, D — 1 and 4, respectively. Hergg is a primitive element ofZ,, where
g2t=1 (mod D).

For such D, the explicit form of G satisfying equations (9), or more compactly
equation (10), is given by [21]

U(l)DG (8) Z eiyo[tlm%+(t27&1)m1m27szm%]/28 {ml’ mz} if $ # 0
. 0(=211) o o2 :
G=6(®) =175 Sy sy — 1/romi) i §=0 n#0  (13)

0(—2S2) _j 2 .
e omi/22 . 0 if §=t=0 s5,#0
75 mZ {m1, 0} 1 2 #
where it is defined that = 2 — s, — 1, and{mq, my} = S;. Hereo (m) is the Gauss sum
1 D-1 ) )
om)=——= ) rom”, (14)
752

It can be seen by direct inspection tiggR 1) = G-1(R) = G'(R), namelyg is unitary.
Our main purpose in this section is to search for the condition of existencermtay
canonicalpartnerO to G such that

GO = QOG Q=1 6, Q] =[0, 9] =0. (15)

If equation (15) is satisfied for some pure phase fagt@nd a unitary®, then we consider
equation (15) as a generalized canonical commutation relation for theGpdir The
equation (15) then implies tha? rotates the eigenspectrum @fin a cyclic order and vice
versa. It is beyond the scope of this paper to examine the characterization of the irreducible
representations of the most general group defined iy,  in equation (15) above. Here,

we confine our attention to those relatively simpler cases leading to the unique irreducible
representations of the group in which the operadsecomes the unitary-canonical partner

of the generalized canonical transformation gener@tdtor this purpose, let us start with the
simplest case such that for some non-zero integgbsc we have

G=0"=Q =1 (16)

Thenwe call the group defined by the elemeiftad’z Q= wherety, ¢, £z are integers defined
(moda), (modb), (modc) respectively, as a discrete Heisenberg—Weyl gioup b, ¢). An
explicit calculation yields that the group elements are uniquely defined only whandes
botha andb (i.e.a = ca’, b = cb’ whered', b’ € Z). Furthermore, from equations (16) and
(15) we also hav@‘ = Q° = Q¢ = 1 which implies that:, b, c must have a greatest common
divisord. These results imply that = dc¢”a’, b = dc"b’, ¢ = dc” wherec” € Z. Without
loss of generality we will assume that = 1. The group defined by the Schwinger operator
basisS;; in equations (2) and (3) with general elementg/4s V™2 w™: wheremy, mo, ms
are integergmod D) is then a specific example &f(a, b, ¢c) witha = b = ¢ = D. The
number of irreducible representationsiofa, b, ¢) with a = da’, b = db’, ¢ = d depends



4116 T Hakidglu

on the numberg’, b’. Fora’ = b’ = 1 there is only one irreducible representation which is
d-dimensional and is given by the Weyl matrices [22],

00 .. 0 1
10 0 0

G — diagl, @, 9%, ..., Q%Y 0101 0 0 (17)
Do . 0
00 .. 10

where a unitaryO satisfying equation (15) exists as given in equation (17). dca’ 1,

the number of such irreducible representations is given by the prathicind they are all
d-dimensional. Up to a unitary equivalence, each irreducible representation is isomorphic
to that in equation (17). The connection of direct product representatidridyfd, d) and

its connection with the Chinese remainder theorem for the unique prime factorizatibn of
was studied recently in [23]. Each prime factor represents an independent physical degree
of freedom allowing the extension of the phase space formalism presented here to more than
one degrees of freedom [16, 17]. A similar decomposition can also be performed for the
more general group(a, b, d) with a, b, d as defined above. The correspondence between the
discrete QPS AA formalism with one degree of freedom and the classical one can be extended
to more than one degree of freedom at an algebraic level. Within the purpose of this paper we
will establish this correspondence only for the case with one degree of freedom and examine
the larger degrees of freedom in a separate paper.

There is already an extensive literature on the representations of the discrete canonical
transformations induced by = SL(2, Zp). One particularly important limit in the discrete
scenario is wherg is represented only by the rotational generaggrin equation (12)
corresponding to the discrete fractional Fourier operathf = G such thag% = I. This
limit has been examined in detail both from the formal quantum mechanical [24] and more
applied, non-algebraic perspectives [25, 26]. For an arbitrary Hilbert space dimension the
multiplicities of the four distinct eigenvalues of the fractional Fourier operattt are not
identical [25] and neithef nor #%/#% has an exact unitary-canonical partner in the sense of
O satisfying equation (15).

2.2. Generators of the infinitesimal canonical transformation® ir R

The modular grous L (2, Zp) does not have a proper continuous limit istb (2, R); hence,

we cannot take the formal limf® — oo in equation (10) to examine the continuous scenario.
We will base the continuous representation of linear canonical transformatiSAg2R) in

the formal sense on

gA;g&QAoo = S&/ (18)
wherea = (a1, @2) € R x R is a continuous phase space vectly,are elements of the
continuous Schwinger operator basis [16] @afid= R : @ with R € SL(2, R) indicate the
transformation matrix with real elements. From here on we will be confined to the continuous
scenario in which we can drop the subscriptfrom the canonical transformation generators

Geo. The three one-parameter subgrogps (j = 1,2, 3) of SL(2, R), as conventionally
represented by the threex22 matrices, correspond to

_( coshyr/2  sinhy/2 [ cosB/2 sing/2
Ql(I//)_(sinhw/Z Coshxp/z) 92(9)_<—sin9/2 c059/2>

ev/? 0>

93(¢)=< 0 e (19)
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whereQ; € gj, —oo < Y < 00, — <0 < w and—xm < ¢ < m. A generic group element
g € SL(2,R) can be parametrized as

y &6
with o, B, v, 8 € R being functions of/, 0, ¢.
The three Hermitian operatols;, (j = 1,2, 3) corresponding to the infinitesimal
generators of the transformation in each subgroup respect the commutation relations

[K1. K] = iKs [Ka. K] = iKy [K1., Ks] = iKs. (21)
We are particularly interested in the continuous irreducible representatiop ¢f = 1, 2, 3)

in the canonical phase space parametrized imyequation (18). This particular representation
of the generators can be given by

K1 = —i(010y, + @20y,)/2
Ko = —i(a18,, — @204,)/2 (22)
K3 = —i(0100, — 00204,)/2

where each irreducible representation acts on the Hilbert space of homogeneous polynomials
of degree 2, and a definite parity where 2 € Z with ¢ = + describing the odd{) and
even(+) parity. Hence we characterize those irreducible representations using the standard
notation by7, (g;) wherex = (¢, €) and the sector of the Hilbert space they belong to by
H,. Also, in the family7, (g;) we are particularly interested in the diagonal representations

of each generator in equation (22).

g= <a ﬂ) where deg =1 (20)

2.2.1. Diagonal representations of thiéh subgroupg;. We now describe the eigenvectors
|e}‘ (y;)) in the diagonal representatioff$ (g;) characterized by a particulgrwhere j =
(1, 2, 3) with their corresponding projections on the canonical phase sﬁae;é(yj)) =

e} (@, y;). Considering the simplest casefof= O first, (@|ef (y;)) are given by

i
ap taz \"
o1 — 02

a1 t+i a2>yz

o1 — i

T,(Qu) tef(@ y1) = C1 (

T, (2) : €5 (@, y2) = C2 < (23)

- o1 iy3
T, (R23) : e3(a, y3) = C3

o2
wherey; € RandC; are constants based on an appropriate normalization by the inner product
(ej.‘ (yj)|e_’].‘ (vj)) = 8(y; — vj). Equations (23) imply that

KileX(vp)) = vjlef (v;). (24)

Within each subgroup;, (j = 1, 2, 3) we now define the unitary subgroup elemeé\,tsz gj
such that

gA;/ — g iTik; (25)

wherel’; € R, (j = 1, 2, 3). The representations of equations (25) in terms ef2matrices
in the phase space = (g;) are given by the; in equation (19), namely, the action of the

each group elemelgij in equation (18) is given by

G856, = 80 = Saya. (26)
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Within each subgroup; there exists, in the Schwinger sense [15pacial canonicapartner
denoted byd; of §; such that

é;/ @jj — efil",-;“j @j/ gAj/ (27)
Equation (27) implies that
Gy =Tk (r)) OVl (r) ~ L€k (s +6))) (28)

where the~ sign indicates that the equality holds up to an indeterminable phase factAor which
we consider to be irrelevant. Then equation (28) provides a representation for the operator
in the diagonal representation @j. To complete the picture we consider, for each subgroup
g the diagonal representation of t&; operator such that

OV fF ) = €9 fX () n; eR. (29)
From equations (27) the action éf’ on this basis can be found as
GUNFFMp) ~ | fF(j +T ). (30)

The ~ again indicates that there is an overall indeterminable phase which we ignore without
any loss of generality. Then equations (27)—(30) completely determine, in the weak sense, the
properties of the operator paig, O) within the Hilbert space of each subgrogpas three
different realizations of the Schwinger operator basis. The connection between the eigenbasis
|e§(y,~)) and|fj?((nj)) is given by the Fourier transformation

|ff () = /dm ek () lef () = fdm &7 £ () (1)

where in short notatiohyf/ (1)) = ]f"|e;‘(yj)) with (J:")nj,y/ = ((f] e} (v)))) describing
the matrix elements parametrized loy;, y;) of the unitary Fourier operatof. Via

equation (31) a Fourier automorphism is implied between the two eigenspaces fof each
as

X)) 5 1FE ) > 1k (=) = 1FE =) = 1l ). (32)

2.2.2. Diagonal representations of the entire graup We now shift our attention from the
parametrization of the diagonal representationg;ab those of the entire group of which
the three-parameter group element will be denoted bifor convenience of the calculations
we adopt the unitary canonical form fgras [27]

Gh = g 'AK A = (A1, Az, A3) K = (K1, K2, K3) (33)
whereA is defined on theS L (2, R) invariant group manifold characterized by the invariant
A% = A%+ A3 — A3, Adopting the particular parametrizatioh; = A sina coshp,

A = A sina sinhb, andA3 = A cosa, equation (33) can be obtained, for example, f@fn
in equation (25) by the unitary transformation

M= (TG " where T3¢ = G068, (34)
SinceG" in equation (33) is an element 6f.(2, R), the irreducible representations also act
on the homogeneous polynomials of degré@@d paritye = + in H, .
(i) Continuous diagonal representations.

Similar to equations (24) and to Ehe first set in equations (28) for the subgroups, we now seek
the eigenvectorgh” (y)) € H, of G* such that

GA R (y)) = 4 n () AeR (35)
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whereA and|hX(y)) are to be found from the eigenproblem in equation (35). Equation (34)
suggests that

() = (Tp5 ") e (7)) (36)

whereA = — A in equation (35). Hencg* (y)) spans the eigenspace of the unitary operator
in equation (33) with\, y € R. The orthonormality of the eigenbasts (y)) is guaranteed by
the unitary transformation in equation (36) and the orthonormality of the eigerjbsis).

A phase space representation ffiof (y)) similar to equations (23) can be found by projecting
it on the phase space vecipas

@ () = i@ y) = @35 NNl )y TS5 (2) = Qa(b) (a) (Z;)
(37)

whereQ,(a) andQ3(b) are implied by equation (19). Thmite}ry—canonicabartner ofG can
be found similarly as it was done for the subgroups. Defifinguch that

g"A@{ — efiA{ @g‘ éA (38)
we find

GM R () = &M 1 () O WX (1)) ~ I (y + )

A ‘ A 39
O [k () = €47[k* (i) GA K () ~ [k (n + A)) 39)

where we will again neglect the overall phases in the second column of the relations above.
The basis vectors in equation (39) are connected by the Fourier transformation

kX (n)) = / dy €77 |h% (y)) |h* () = f dn €771k* (1)) (40)

and a similar automorphism to equation (32) betw@ef(y)) and |k*X(n)) as well as to
equation (5) at the operator level betwegand® can be written.

(ii) Discrete diagonal representations.

In examining the discrete representations of the entire group we start with the diagonal ones
le3 (m)) of K and associate with them the eigenfunctions

a1 +iao >m

o1 — iOlz

(@lef (m)) = ef (@ m) = Ny (aF + )’ ( (42)
whereN," is a normalization based on an inner prodet(@; m)|eX (&; m’)) = 8. For
the state in equation (41) we have

Kalez (m)) = mle} (m))
Klez (m) = (€ = mlej (m + 1) (42)
K_lez(m)) = (¢ +m)lez(m — 1))

where Ky = (K; + iK3) and the Casimir elemerk? = 1/2(K.K_ + K_K4) — K2 has
eigenvaluef(¢ + 1). In terms of the? # 0 representation in equations (41) and (42), the
continuous representations that we used in equation (23) correspond#c=th® case. A
general eigenvector for a group element in equation (33) can be found similarly as in the
continuous case by redefiniﬂg: (A1, Ao, A3) as, forinstanceA; = A sinha’ sind’, A, =

A cosha’, A3z = A sinha’ cosb’ and the transformation

G" = (I3 "Y' GG where 75" = G163, (43)
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The eigenvectors:” (m)) of a general group elemeg@t* are then associated with the functions
in H,
(@lht (m)) = h* @ m) = @35 " esom) T (“1> = Qo(—b)Qu(a) (‘”)
o a2
(44)

whereQa(—b) andszl(aA) are implied by equations (19). To establish the representation of the
unitary canonical paitg, O) in the discrete case we consider

QA@V — efiAr@rgAA (45)
corresponding to a change— r € Z in equation (38). For the system of eigenvectors we
find

GM R (m)) = e MM RX(m)) - OTIW (m)) ~ [ (m + 1))

Ok () = €7 kX (j, n)) GMEE () ~ KX (n + A))

where A, n € R. The eigenspaces are connected by the (discrete and continuous) Fourier
transformation as

kX (&; n = Ze—inmhx (&; m) hx (5{; m) = /dn eim;;kx (&; n). (47)

(46)

The equations (46) and (47) conclude our brief treatment of the unitary continuous phase space
representations of the canonicalO pair in the weak matrix element sense.

3. Implications for the Hamiltonian systems with dynamical symmetry group and
generalized AA operators

Recently, an algebraic approach was studied by Wang and Chu [28] in the solution of the one-
dimensional inverse problem for the Hamiltonian systems with dynamical group symmetry. In
the simplest case of one dimension, the inverse problem reduces to that of finding an operator
regarding the dynamical symmetry group of the system such that it will be invariant under
either a certain subgroup or the entire group of canonical transformations. The group of
canonical transformations then naturally reflects the properties of the dynamical symmetry of
the system. For one-dimensiomaltonomousystems, the invariant operator under canonical
transformations corresponds to the generalizetion operator, by which the Hamiltonian
of the entire system can be fully described. In the following, we will examine the quantum
canonical transformation group as the dynamical symmetry group for an Hamiltonian system
and derive the equations of motion describing the time evolution of the generalized quantum
AA operators.

Let us assume that the Hamiltoniardescribing the dynamics of a system with one degree
of freedom is represented by

H = H(K1, K2, K3) (48)

Wherelej are the Hermitian generators of thg2, R) canonical transformation algebra in
equation (33). The simplest but a sufficiently general example of an Hamiltonian with a
dynamical group symmetry can then be obtained if the Hamiltonian is a real function of the
linear superposition ok ; as,

H =H(PKi+ QK>+ RK3) P,O.ReR. (49)
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Here, we do not make any assumptions aside from the onétieat real valued and a well
behaved function. Our focus will be on those unitary elements of the dynamical symmetry
group that can be described by

ar = e—ir(P;%1+Q1€2+RI€3) (50)

where the Hamiltonian in equation (49) becomes

~ 3\ ap
= | —
H=H ( 8F> g
The time-dependent eigenvectdns/ (¢)) of H and the eigenenergies in the continuous

representation are given by
@yrm) =e>'n’@,y)  E,=H(y) (52)

(51)

r=0

whereh* (&, y) is given by equation (37). Here, the unitary canonical parthéo G plays
the role of the unitary angle operator and is defined by equation (38). The time evolution of
0% is given by

.d A I .
|a(‘ﬁy’|oz|¢y> = (Y [[H, O%1Nry) = = (Y |O° [, {H(y + &) — H(y)). (53)
If we symbolically associate drermitianphase operator g = 0 with

A d .

=—i —0OF¢ 54

¢ ac? |, (54)
equation (53) becomes, in termsgof

. d . dE, .

!'LnO<Wy{ Eqs 1v”y> = _d_]/y !lin()(wyfthpy) (55)

which is the quantum analogue of the classical equation of motion for the canonical angle
variable. Hence the unitary operatorshould be considered as thaantum angle operator
which is the unitary canonical partner of the action opergtor

The properties of the dynamical group symmetry can also be examined by using the
discrete representation. In this case, equation (51) is still valid whereas (52) becomes

@X @) = €5 nx(@; m) E, = H(m) (56)

where(a |y (1)) is the time-dependent eigenvectbt,(a; m) is given by equation (44) and

E,, = H(m) is the discrete eigenenergy spectrum depending on the discrete eigenstate index
m. The appropriate angle operatdf in the discrete case has been studied in equations (45)
and (46). The nature of the operat®@r becomes more transparent if we examine the derivative

of equation (45) with respect th at A = 0. This can be readily evaluated as

d . L 3 oA N
— — equation(45) == [n-K,0=—-r0" (57)
dA A=0
whichis the generalized Susskind—GIogowe[—Carruthers—Nieto commutation relation [5,7,15]

for the generalizedadial number operatoii - K and the generalized unitary phase operator
O. The time evolution o®" is then

. d A A .
|E(1/f,ﬁ,|(9’|z/fnx1) = (Y \[H OTIW ) = = (W [0 [¥) {(H(m + 1) — H(m)} (58)

which is the equation of motion for the unitary canonical angle operator of the generalized
oscillator with a discrete spectrufy, = H(m). Here, two results are in order. The first is
that we have found a correspondence between the classical and quantum AA formalisms for
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Hamiltonian systems with a dynamical group symmetry of the type given by equations (49)
and (50). The second result is the equivalence of the quantum action operator to the generators
of canonical transformations as well as that of the unitary-canonical angle operator to the
unitary-canonical phase operator.

Although the continuous and discrete representations of the AA operators are similar,
depending on the continuous/discrete nature of the eigenenergy spectrum, one or the other is
more convenient in the formulation of a physical problem. This will be more transparent in
the next section when we discuss the AA formalism of a generalized oscillator.

3.1. Implications for the generalized oscillator Hamiltonian and the quantum phase operator

Inthis and the following sections we refer to the appendix which includes some relevant parts of
[15]. There, itis shown that the QHO algebra is recovered in the infinite-dimensional limit (i.e.
D — oo henceg — 1) of the admissiblg-oscillator algebraic realization in equations (A.4).

The importance of the naturally emerging admissiglescillator realizations is that they
admit an algebraic formulation of the quantum phase problem and also provide a natural basis
to examine the harmonic oscillator phase in the infinite-dimensional limit of the algebra in
equations (A.4). Respecting the historical development, we will nevertheless start with a brief
outline of the phase problem using the dynamical continuous symmetry group of the QHO.
The generator&;, (i = 1, 2, 3) of the dynamicak/(2, R) symmetry of the QHO in thé, p
representation are given by

= (&2 = p? Ky =33+ p% K3=;(&p+ pR) [x, pl =i (59)
where the generators respect equations (21). Our first attempt will be to find the unitary
canonical partner t& 3 in equations (59). Witlh — —id/dx, the eigenproblem foK 3 yields

Ksl¥a(13)) = yal¥a(ys)) yseR (x|¥3(y3)) = Nax@7=1/2 (60)

whereNs is a normalization based on an inner product. HenceG§or= e Tsks,

G52 1¥a(ys)) = €77 Y3(y)). (61)

The unitary canonical partné?; to G, such that equation (27) is satisfied fo= 3, can be
found following the steps leading to equations (28)—(30). G)@perator for an arbitrary and
real¢ is given by

05 =/ dys [ (vs + O) (¥ (v3)
or equivalently by

05 = / dnz €572 [ (119)) (¥ (n3)| 62)

where

1 (1)) = / dys &% (12))

namely, the existence @; is manifested by the presence of a complete spectruRgain

the real axis and, in returi); andGs are connected by a Fourier automorphism. A similar
procedure can also be appliedKg in equation (59) since the eigenspectrum of this operator
also spans the symmetric positive and negative values on the entire real axis. However, there
is a problem with thek, operator. Because of the fact thi in equations (59) is a non-
negative operator, its eigenspectrum spans only the positive real axis. Hence, the Fourier
automorphism is not apphcableloz and, in return, the unitary canonical partnegsaannot
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be found. This problem was attacked from a completely different perspective a long time ago
in the elegant work of Boyer and Wolf [11] where they made use of the unitary isomorphism
between theadial representation of the dynamic8L (2, R) symmetry group of the multi-
dimensional QHO with an added centrifugal term of arbitrary strength and the representation
of the same group on the unit circle. Through this unitary mapping the space of square
integrable functions on the unit circle is an inner product space endowed with a translationally
invariant non-local measure. However, the drawback of this elegant method is that, the unitary
irreducible representations are not single-valued under full rotations on the unit circle and this
applies particularly to the standard one-dimensional QHO.

The phase problem in the QHO being the central theme of this paper, we suggest here and
in the following sections an alternative and, perhaps, a formally simpler way of looking into
the problem. We start with the admissilgleoscillator realization in equation (A.4) with the
operatorsA, AT andQ and approach the QHO algebra by extendint infinity. We formally
express the generalized oscillator Hamiltonian as (in analogy with equation (51))

H="H(N) =H(qd/9q)Qlg—1 (63)
where the limity — 1 is achieved simultaneously with — oo. The deformed algebra
defined by the element$, AT and 0 is an admissible version of the well known (deformed)
g-oscillator algebra naturally admitting real and non-negative norms in the finite-dimensional
cyclic Hilbert spaceH . Since the deformation parametge= e 77" is a pure phase with
the property thay? = 1, the operatorsi, AT, O act on in the finiteD-dimensional cyclic
Fock space spanned by the cyclic orthonormal vediai$ = {|n)o<n<(p-1); In) = [n + D)}
with (n'|n) = 8,/ , as,

Aln) =/ f(m)ln — 1)
Alln) =/ fn+Din +1) (64)

Qln) =q"ln) g =€
with 0 < f(n) and f (n) = f(n + D) where
n+(D—1)/2 _ ,,—n—(D-1)/2 2
iy =1 1 +C  C=—=—+0 (65)
q9—q lg —q~

The algebra in equation (A.4) and thg relations (64) admit a unitary canonical part@er to
i.e. the unitary quantum phase operaigr

D-1
£s=>_In—1)n| £ =1 (66)
n=0

such that
08l =g™&0" T AeR. (67)
The eigenvectors df; are{|¢)} = {#)o<r<(p-1: [®)r+p = |6),} € Hp With . ($$), = 8,
where
. 2

. _ 1 b1
Eold)r = €77 |9), ), = 75 > @ ) vo="7 (68)
n=0

The dynamical time evolution oﬁiz, for the generalized Hamiltonian in equation (63) is given
by equation (58) as

. d & & +r n
|a(ﬂ/|5¢r,|n) = —(n'|EIn){H(g 3/3g) ("™ — g™ g1}

= —(n|E;In){H(n +r) — H(n)} (69)
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and a close inspection of equation (69) with (58) indicates that the (@iﬁ},) is the
correspondinginitary AA pairfor the Hamiltonian in equation (63). As mentioned before, the
g — 1 and theD — oo limits are to be taken simultaneously on both sides of equation (69).
In this limit the phase operaté& is theunitary versionof the Hermitian Pegg—Barnett phase

operator [29]. Making use of the fact that = q", equation (67) yields the Susskind—
Glogower—Carruthers—Nieto commutation relations [5, 7, 15] for the operato(lﬁa@).

Note that, the QHO described by = w n yields the equation of motion for the phase operator

in equation (69) which is formally identical to the equation of motion of the canonical angle
variable for the classical harmonic oscillator. When we examine the quantum AA formalism
of the generalized quantum oscillator in section 4.2, the harmonic oscillator will be realized
in the specific limit when the dimension of the discrete phase space representations of the
generalized oscillator is extended to infinity.

4. An equivalent realization of the Wigner function by (G, ©)

4.1. A generalized approach to the AA Wigner function using continuous phase space
representations

It was shown that the generalized canonical phase space representation of a quantum system
can be given based on the duality between the discrete WK and the unitary cyclic Schwinger
operator bases [15, 16] in equation (1). An alternative to this approach is to formulate the same
problem using the canonical transformati@and its unitary canonical partné.

The properties ofG, ©) studied in sections 2 and 3 manifest a full analogy to those of
@, V) in equations (3)—-(5). Among the four equivalent choices in (5), we define this analogy
by the correspondence

u (@)
)+ (3)
Itis now suggestive to define a Schwinger operator basis labellédbyr, 1) € R xR

and defined as

f:; — —irltz/Z@rlg’\rz — eir1r2/2 gAIz@Il. (71)
Before we study the algebraic propertiesStf we look into some of the tracial properties of
G andO operators. Since we consider the continuum limit, it is more appropriate to examine
G andO in their continuous representation. Starting with equation (39) we choogethe))
basis for their representation as

on = / dy |h* (y + 1)) (W ()] g = f dy e | () (h* ()] (72)
from which we obtain
TrH{O"G™) = f dy’ (W% (y Y O™ G2} |h* (y)) = 2m8(11)8(2) = 2708 (). (73)

Using equation (73) the properties Bf can be found in manifest analogy with thoseSgf
in equation (7) as
sT=%_;

A PN o (74)
()2 = Zz(Z2 2z0) (associativity)

=1 (unit element)
S =1 (inverse)
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Hence, the canonical transformation genergt@nd its unitary canonical partnér form a
continuous realization of Schwinger’s operator basis.

Using equation (1) and the analogy manifested by equation (70) we construct a dual form
for the WK operator basis using the realization of the Schwinger basis defined in equations (71)
and (74) as

Ao a7 - ia . av - o -
Acr(V) =/Ze—'”vz; IR =f§e'”VACT(V> (75)

where the integrals are to be considereftir R. Using the properties df: it can be shown
that equations (75) provide an operator basis for the Wigner function as

Acr(V) = ALp (V)
d_VACT(‘_}) =1
2r (76)
Tr{Acr(V)) =1
TrH{Acr(V)Acr (V) = 8(V = V).
The properties (76) are necessary and sufficient conditions in order to define a correspondence
between an arbitrary operatérand its WWM symbolf (V)

F= /dﬁ FW)Acr (V) fV) =Tr{FAcr(V)) (77)

with the condition thaf{ F|| = [ dV | £ (V)[? < co. A few simple examples can be given:
(a) for F = GA. A
Using the same relations as in (a), the WWM symbaf; tfis

ga(V) = Tr{GMAcr(V)) = e'M% (78)

and sin]ilarlx
(b) for F = OF

0. (V) = THO  Acr (V)} = 2, (79)

(c) A particularly interesting case arises when the arbitrary open‘ﬁﬁsrinvariant under a
specific unitary transformation By; such that

S iFS;=F. (80)
Such an operator has a translationally invariant WWM symbol
FOV) = f(V +i) (81)

where, since\ is arbitrary, it is implied thaf(V) is independent of -n, wheren, = i/l
is the unit vector in thei direction. R

ForG describing the elements of the dynamical symmetry graug, (V) corresponds to
the quantum AA operator representation of the WK basis. Based onthe analogy in equation (70)
and the generalized Wigner function defined in equation (8) we now defijeaeralized AA
Wigner function of an arbitrary quantum state) as

Wy (V) = (Y| Acr (V) |¥) (82)

which can be expressed in the continuagton eigenbasias

. © dg;
Wy (V) = / z—rle'” Y2 (4 |h* (Vo — 1/ (h* (Vi + 11/2) 1Y) (83)

oo &I
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and in the continuouangle eigenbasias
- © dr, .

Wy (V) = / 2—7126"’2 PP R (V2 = T2/ 2) (K (V2 + T2/2)|¥). (84)
Thus, equations (8) and (82) are two equivalent phase space representations of the same
guantum system. The former is defined in a generic canonical 84s¥5, whereas the latter
is expressed in terms of the elements of the dynamical symmetry group of the same system.
In equations (83) and (84), andV, are, by the WWM correspondence in equations (78) and
(79), the generalized classical AA variables.

4.2. AA Wigner function for the generalized oscillator with the discrete phase space
representations

In the previous sections we examined the generalized theory of quantum AA formalism using
the continuous representations of the generalized AA operators. Here, we particularize this
formalism to that of the representations of a generalized oscillator with a discrete spectrum in
the finite D-dimensional Hilbert spac#,, by constructing the unitary canonical pait, ©)

as A .
(6) (&) ®

whereéy = e 7V with N as defined in equations (A.3), (A.4) and (64). The unitary operator

€¢ corresponding to the unitary angle operafbmbove will be represented by the unitary
quantum phase operator defined in equations (66)—(68). To facilitate the correspondence with
the classical case, we switch from the generalized notadtien (V1, V,) of the AA variables

in section 4.1 to the more standard afe6). The realization of the AA WK basis in the
unitary number-phase basisy, 5‘4)) has been derived in [15] for the generalized oscillator
with discrete, cyclic and finit®-dimensional Hilbert space representations as

R 1 . 4 A A
— (yom1J —m20) q—iyomima/2 Gmi sm -

Acr(J,0) = ﬁ;e' voma) =maf) g-iyommz/2 £ iz meZpxZp. (86)
In the discrete case, the set of completeness relations analogous to the continuous ones in
equation (76)—by direct use of equation (86)—are

Acr(J,0) = Al (J,0)

dJ | ddAcr(J,0) =1

/ ) / cr(J,0) (87)

Tr{Acr(J,0)} = 3n

TrH{Acr (J,0)Acr(J',0)} = 2n8(J — J)8(6 — 0)).
The AA Wigner function ofAcr(J,0)ina physical stat¢y) is then given by [15]

n 1 D—l X
W(J.0) = Wlher(,0)l) = 5 Yo eyl —k/2(J +k/2y)  keZ (88

=0

where the state§/ + k/2) are vectors in continuously shifted Fock spaces [15]. Here
(I £k/2);k = oddy € FO*/2 and{|J £ k/2);k = eveny € F@ with o satisfying

the conditions [15] that@ — «) € Z anda € R[0, 1). The definition of an arbitrary vector
in the continuously shifted Fock spag® has been given in [15] by

D-1
In +B) = _173 D e g BEeR0.D)  In+p)=In+D+p)eFP.
=0

(89)
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Now, let us takeD — oo in equation (86) and, using equation (89) examine equation (88) for
|¥) being: (a) a pure Fock state, ifgr), = |n), n fixed and (b) a typical mixed Fock state of
the type|w), = (In) + |n — 1))/+/2, n fixed.

(a) For|y),, and after a short calculation, equation (88) can be evaluated in the limit
D — oo as

1
W0y = 5—bn ). (90)

The marginal probability distributions for theor 6 variables in the pure Fock state can then
be found by integrating over the other variabler J, respectively, as

P, = fde W,(J,0) = 5(n — J)
i 1 (91)
P, = /d] Wy(J.0) = o

which correctly describe the expected results for the pure Fock state.
(b) The statey),, is the so-calledplit state. For this state, using equation (89), we obtain

W, )| = %{S(n — N +28(n—J —1/2)cosh +8(n — J —1)}.  (92)

The marginal probability distributions yield fo¢),,

P()|m ={8(n = J)+é(n—J —1)}/2

P©)|n = (1+cos)/2n (93)

which are the correct action and angle probability distributions for the split state.

Equation (88) also provides the correct time dependence for the AA Wigner function in the
QHO limit. In order to observe this we will start with the generalized oscillator in equation (63).
The time dependence of the AA Wigner function is given by the standard expression

d N
IS Wo ], 0) = WIIH, Acr (7, 0)]1¥) (94)

or, equivalently, in terms of the WWM symbal J, 6) of H as [30]

%Wv,(J, 0) = {h(J,0) % Wy (J,0) — Wy (J,0) x h(J, 0)}

* = ex ! (8_5 (8_5 (95)
=31 5790 097

where(h « Wy, — Wy, x h) = {h, Wy }yp is the Moyal (sine) bracket [30]. The calculation
of equation (95) requires the knowledge /of/, 6). This can be obtained by using the
completeness equations in (87) and the Hamiltonian opetator(63) as

H = /dJ fde h(J,0)Acr(J, 0) where h(J,0) = Tr{HAcr(J, 6)). (96)

The trace operation can be conveniently carried in the discrete finite-dimensional cyclic
eigenspace|n)} = {|n)ocng(p-1); In + D) = |n)} of the Hamiltonian¥. Since for the
diagonal matrix element&|Acr(J,0)|n) = W(J, 0)|, are Wigner functions of the pure
Fock states, we can also directly use the expression (90) in the calculation of the trace. We
find that

h(J,6) = H(J). 97)
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Using equation (97) in equation (95)

d . i 9 i 9
AUDES {H<J+§£)—H<J 289>}W¢(1 0). (98)

Equation (98) is the equation of motion of the AA Wigner function for an arbitrary generalized
cyclic oscillator in equation (63). Now, we apply equation (98) to the QHO case where
the Hamiltonian in equation (63) is a linear operator\aflet us sayH(N) = wN with o
describing the oscillator frequency. Then, by equations (96) and97)0) = wJ. For the
QHO equation (98) then yields,

{% 380 } Wy (J,0) = - 0=0(t) = wt (99)
namely, the time evolution of the QHO AA Wigner function in the phase space takes place
on the classical manifold/ = constantd = wt) as expected. By equation (90), The AA
Wigner function for the pure Fock state is static. The full time dependent solution of the AA
Wigner function, for instance, for the split state and the corresponding marginal probability
distributions can be completely determined by inserting the solutierizefin equation (99)

into equations (92) and (93).

5. Conclusions

The canonical-algebraic connection between the quantum phase problem and the QPS has
already been noticed recently by some other workers. In particular, using the generators of
the angular momentunu (2) algebra and its dual in terms of the Hermitian canonical phase
operators Vourdas studied [31] an equivalent canonical pai t®) as defined in this paper.

Our specific aim in this paper was to further the canonical algebraic approach introduced in
[15] to unify the formulation of quantum phase with that of the algebraic theory of quantum
canonical transformations. In this context, we investigated the generators of quantum canonical
transformations, their unitary canonical partners in the Schwinger sense, as well as their action
on the functions of canonical variables of the QPS, in particular the Wigner function. Through
this connection, the quantum phase is formally established as the unitary canonical partner of
the quantum action operator which is also demonstrated for the one-dimensional generalized
oscillator.
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Appendix A.

In [15] we examined two subalgebraic realizations of the discrete-cyclic Schwinger operator
basisS;;. In the following we will have a brief summary of them. Based on a fixed pair of
vectorsm, m’ the sine algebra generated By supports two subalgebraic realizations [15].
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The standara,s/(2) subalgebraic realization is obtained by constructing the generators

J = dﬁ,;l +d/$',;1,

Jo=d*S_s +d*S_ (A1)
L= S’nq,,;,, = qj3+%
wheredd™* = d*d’ = —(q%/? — ¢~Y?)~2 andg = e ¥’ gg that
. s N I L—L1 . D
1
J;L = qi LJ; [J,, J+] = —m = — |:]3 + E:| . (AZ)

This particular subalgebraic realization is sometimes referred as the magnetic translation
group [32].

On the other hand, more importantly for the purpose of this work, a second class of
subalgebraic realizations exist in the form ofadmissibleg-oscillator algebra which can be
obtained by defining

A= dﬁ,,q + d@,,‘,r
AT =ad*S_; +d'«S_ (A.3)
Q = q—N—(D—l)/Z — ql/zs,(,;,,,,q/)

wheredd”* = —d*d’' = —(q —q¢~H~tandg = e """’ 50 that
fo=q0i  Ao=q 0
ATA=C+[N
[V] (A.4)
such that
AAT—gATA=Q—-q)C+0

where V] = (01 = 0)/(qg — ¢~ Y andC = (| sin(yom x m’)|)~L. Equations (A.4) imply

that theg-oscillator spectrum is non-negative (i.e<0||ATA|| where the spectrum is given

by the eigenvalues of the operatéf A = C + [N]) which, further implies that the Hilbert

space is spanned by vectors with admissible (non-negative) norm. It was shown in [15] that
the admissiblej-oscillator algebra in equations (A.3) and (A.4) is crucial in establishing a
canonical-algebraic approach to the quantum phase problem. Interested readers can find more
detailed discussions of the admissipl@scillator realizations therein.
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